REPREZENTACIJA DANYCH W
PAMIECI

Jest 10 rodzajow ludzi - ci, ktdrzy

Adam Sawicki ,Regedit” rozumiejg kod dwdjkowy i ci, ktérzy go nie
sawickiap@poczta.onet.pl rozumiejg.
hakerskie ujecie socjologii

W tym dodatku mowa bedzie o sprawach, ktore majg miejsce w komputerze praktycznie
na najnizszym mozliwym poziomie. Bedziemy sie zajmowali zerami i jedynkami. Poznamy
takze sposob, w jaki komputer zapisuje w pamieci wszelkie informacje.

Wbrew temu, co mogtoby sie wydawac¢, wiadomosci tego rodzaju nie sg bezuzyteczne.
Majg one ogromne zastosowanie w praktyce programistycznej. Dlatego radze podejs¢ do
tej lektury powaznie i postarac sie zrozumiec¢ opisane tu, miejscami niestety nietatwe
informacije.

Pamietaj: Wszystko wydaje sie trudne, dopdki nie stanie sie proste!

Algebra Boole’a

Wbrew groznie brzmigcej nazwie, zaczniemy od rzeczy catkiem prostej. Poznamy
podstawowe, teoretyczne zasady operowania na zerach i jedynkach, zwane algebrg
Boole’a lub logikg dwuwartosciowa.

Boole George (1815-1864), logik i matematyk angielski, od 1849 profesor matematyki
w Queen's College w Cork (Irlandia), cztonek Towarzystwa Krolewskiego (Royal Society)
w Londynie. Zajmowat sie logikg formalng, rachunkiem prawdopodobienistwa, opracowat

~ algebre dla zbioru dwuelementowego (algebra Boole'a). Gtdwne dzieto - An Investigation
. of The Laws of Thought (1854).!

Algebra Boole’a postuguje sie jedynie dwiema mozliwymi cyframi. Przyjeto sie zapisywac
je jako 0i 1. Mozna tez wyobrazi¢ je sobie jako dwa przeciwne stany — prawda (ang.
true) i fatsz (ang. false), stan wysoki (ang. high - w skrécie H) i niski (ang. low — w
skrécie L), gruby i chudy, yin i yang czy cokolwiek innego :)

Dziatania

Na tych dwoch dostepnych liczbach definiuje sie kilka podstawowych dziatan.
Negacja

Jest to dziatanie jednoargumentowe oznaczane symbolem ~ (tzw. tylda - czyli taki

wezyk pisany nieco u gory :) Bywa tez oznaczane przez takie cos$: — lub przez pisany za
negowanym wyrazeniem apostrof: ‘. Moznaby je poréownac znanej z normalnej

! Zrédto: http://wiem.onet.pl/

http://wiem.onet.pl/

matematyki zamiany liczby na przeciwng za pomoca poprzedzajacego znaku minus -. Tak
jak liczba -5 jest przeciwna, do liczby 5, tak ~x oznacza stan przeciwny do stanu
oznaczonego przez x. Poniewaz w logice dwuwartosciowej wartosci sg tylko... dwie,
nietrudno jest wypisa¢ tabelke dla tego dziatania:

X ~X
0 1
1 0

Tabela 1. Wartosci logiczne negacji

Jak wida¢, zanegowanie wartosci powoduje jej zamiane na wartos¢ przeciwng, czyli drugq
sposréd dwéch mozliwych.

Mozna jeszcze dodac, ze negacja nazywana bywa tez przeczeniem, a jej stownym
odpowiednikiem jest stowo ,nie” (ang. not). Jesli gtebiej zastanowisz sie nad tym,
wszystko okaze sie... logiczne! Stan, ktory nie jest zerem - to jedynka. Stan, ktéry nie
jest jedynka - to zero :D

Koniunkcja

Przed nami kolejne dziatanie kryjgace sie pod tajemniczg nazwaq. Jest to dziatanie
dwuargumentowe, ktére mozna poréwnac znanego nam mnozenia. Symbolizuje go taki
oto dziwny znaczek przypominajacy daszek: A.

Mnozac jakagkolwiek liczbe przez 0, otrzymujemy 0. Z kolei 1*1 daje w wyniku 1.
Identycznie wynika iloczyn wartosci Boole’owskich. Skonstruujmy wiec tabelke:

x | y |xay
0 0 0
0 1 0
1 0 0
1 1 1

Tabela 2. Wartosci logiczne koniunkcji

Koniunkcja bywa tez nazywana iloczynem, a odpowiadajacym jej stowem jest ,,i".
Faktycznie mozemy zauwazy¢, ze aby dziatanie dato w wyniku jedynke, jedynka muszg
by¢ obydwa argumenty dziatania: pierwszy i drugi.

Alternatywa

Skoro jest mnozenie, powinno by¢ tez dodawanie. Pan Boole o nim nie zapomniat, wiec
mamy kolejne dziatanie. Jego symbol jest przeciwny do symbolu koniunkcji (odwrdécony
daszek) i wyglada tak: v.

Tylko dodawanie dwdch zer daje w wyniku zero. Jesli cho¢ jednym ze sktadnikéw jest
jedynka, wynikiem dodawania jest liczba wieksza od zera - 1 albo 2. Poniewaz dwojka w
algebrze Boole’a nie wystepuje, zamienia sie na... nie nie! Nie ,zawija sie” z powrotem na
zero, ale zostaje jakby , obcieta” do jedynki.

Tabelka bedzie wiec wygladata tak:

x | v |xvy
0 0 0
0 1 1
1 0 1
1 1 1

Tabela 3. Wartosci logiczne alternatywy

Stéwkiem odpowiadajacym alternatywie jest ,lub”. Widzimy, ze wynikiem dziatania jest
1, jesli wartos¢ 1 ma przynajmniej jeden sposrod argumentow dziatania — pierwszy lub
drugi. A wiec wszystko sie zgadza.

Roéznica symetryczna

Dziatanie to jest czesto pomijane w podrecznikach logiki. Tymczasem jego znacznie z
punktu widzenia programisty jest ogromne. Jak bardzo - to okaze sie pdzniej.

Na razie zajmijmy sie jego zdefiniowaniem. Aby sporzadzi¢ tabelke, przyda sie angielska
nazwa tej operacji. Brzmi ona exclusive or (w skrdcie xor) - co oznacza ,wytacznie lub”.
Aby w wyniku otrzymac¢ 1, jedynkg musi by¢ koniecznie tylko pierwszy lub tylko drugi
argument tego dziatania, nie zaden ani nie obydwa.

Tabela 4. Wartosci logiczne réznicy symetrycznej

Xoy

R =X=] L
= OO
or +~ol|®

To by byto na tyle, jesli chodzi o operacje logiczne konieczne do wprowadzenia cie w
S$wiat komputerowych bitow. Aby jednak twoja wiedza z dziedziny zwanej logikg (tak,
tak! — na pierwszym roku informatyki jest osobny przedmiot o takiej nazwie, na ktérym
uczg wtasnie tego! :) byta petna, opisze jeszcze szybciutko pozostate dwa dziatania.

Ekwiwalencja

Ekwiwalencja to inaczej rownowaznos¢ i odpowiada jej nieco przydtugie stwierdzenie o
tresci: ,wtedy i tylko wtedy, gdy”. Daje ono w wyniku jedynke wtedy i tylko wtedy, gdy
obydwa argumenty sg takie same. Symbolizuje go taka zwrdcona w obydwie strony
strzatka: <. Mozna wiec utozsamiac to dziatanie z réwnoscia.

x | v |xeoy
0 0 1
0 1 0
1 0 0
1 1 1

Tabela 5. Wartosci logiczne ekwiwalencji

Implikacja

To zdecydowanie najbardziej zakrecone i najtrudniejsze do zapamietania dziatanie
logiczne. Cieszmy sie wiec, ze programista raczej nie musi go pamietac :)

Inna nazwa implikacji to wynikanie, a odpowiadajace mu stwierdzenie brzmi: ,jezeli ..., to
...”". Oznaczane jest strzatka skierowang w prawo: =. Oto jego tabelka:

X=>y

== O oOlX
= O+ OoOIR
o ||

Tabela 6. Wartosci logiczne implikacji

Logicznego wyjasnienia takiej a nie innej postaci tej tabelki nawet nie bede préobowat sie
podjac. Przejdzmy teraz lepiej do dalszej czesci logiki, by jak najszybciej mie¢ jg juz za
sobq :)

Aksjomaty

Poznamy teraz kilka prostych wzorow, ktére ukazg nam podstawowe zaleznosci pomiedzy
poznanymi dziataniami logicznymi.

Przemiennos¢

avb=bva

Dodawanie tez jest przemienne - jak w matematyce.
anb=bnaa

Mnozenie tez jest przemienne.

tgcznosc

(avb)vc=av(bvo)

Dodawanie jest taczne — jak w matematyce.
(@anb)ac=an(bac)

Mnozenie tez jest taczne.

Rozdzielnos¢

an(bvc)=(aanb)v(anc

Mnozenie jest rozdzielne wzgledem dodawania.

av(bac)=(avb)a(avo)

Dodawanie tez jest rozdzielne wzgledem mnozenia — a w normalnej matematyce nie!!!

Identycznos¢
av0=a
avli=1
arn0=0
anl=a

To wynika bezposrednio z tabelek.

Dopetnienie
ave~a=1
an~a=0

Bo jeden z argumentdw zawsze bedzie przeciwny do drugiego.

Prawa De Morgana

~(avb)=~anann~b
~(aanb)=~avn~b

Logika w programowaniu

Uff... Pora wrdci¢ do sedna sprawy, czyli do programowania. Tutaj czesto zachodzi
potrzeba reprezentowania jednego z dwdch standow. Przykladowo zmienna Blad w stanie
1 oznaczataby fakt wystgpienia btedu, a w stanie 0 fakt jego niewystgpnienia - czyli ze
wszystko jest w porzadku.

Typ logiczny

Typem danych w C++ reprezentujacym wartosci logiczne jest bool. Dwa stany
reprezentowane sg zas przez specjalne stowa kluczowe - true oraz false. Mozna tez
uzywac identyfikatoréw TRUE i FALSE pisanych duzymi literami.

Dla przyktadu wezmy linijke kodu, ktéry tworzy wspomniang zmienng i wstepnie jg
inicjalizuje:

bool Blad = false;
Wyrazenia logiczne

Oprocz bezposrednich wartosci true oraz false, wartosci typu bool zwracane sg takze
przez operatory poréwnania takie, jak == (rowny), != (rézny), < (mniejszy), >= (wiekszy
lub réwny) itp.

Kazda okazja jest dobra, aby po raz kolejny przestrzec przez typowym btedem, na ktéry
(niestety?) w catej swej zachwalanej przez wielu elastycznosci pozwala jezyk C++.
Chodzi o réznice pomiedzy operatorem przypisania =, a operatorem poréwnania
(réwnosci) ==. Ten pierwszy takze zostanie zawsze zaakceptowany w miejscu drugiego,
ale z pewnoscig spowoduje inny (czyli nieprawidtowy) efekt.

Uwazaj na to!

Wartos¢ innego typu - np. liczba - takze moze zostac potraktowana jako wartos¢
logiczna. Przyjete zostanie wowczas 0 (fatsz), jesli wartosc jest zerowa (np. liczbg jest 0)
oraz prawda w kazdym innym wypadku.

Ta cecha jezyka C++ jest catkiem przydatna, poniewaz pozwala sprawdzac , niezerowosc”
zmiennych (szczegdlnie wskaznikéw) bez postugiwania sie operatorem poréwnania, np.:

4

if (Zmienna)
std::cout << "Zmienna jest niezerowa";

Operatory logiczne

Poznane na poczatku dziatania algebry Boole’a majg, jak mozna sie domysla¢, swoje
odpowiedniki w jezyku programowania. W C++ sg to symbole odpowiednio:

» | — negacja - przeczenie - ,nie” (jednoargumentowy)
» && - koniunkcja - iloczyn - ,i” (dwuargumentowy)
» || - alternatywa - suma - ,lub” (dwuargumentowy)

Najtatwiej zrozumiec istote dziatania tych operatoréw zapamietujac ich stowne
odpowiedniki (te w cudzystowach). Rozwazmy przykitad:

int Liczba = 7;
void* Wskaznik = 0
|

bool Wartosc = ((Wskaznik) || (Liczba == 6)) && false;

Wskaznik jest zerowy, a wiec jego wartoscig logiczng jest false. Po zanegowaniu
zmienia sie w true. Zmienna Liczba nie jest réwna 6, a wiec wartoscig poréwnania
bedzie false. true lub false daje true, true i false daje w koncu false. Zmienna
Wartosc zostanie wiec ostatecznie zainicjalizowana wartoscig false.

Postaraj sie przeanalizowac to jeszcze raz, doktadnie, i w petni wszystko zrozumiec.

Systemy liczbowe

Odkad wynaleziono pienigdze i koto, ludzie zaczeli kreci¢ interesy :) Rownie dawno temu
ludzie zaczeli liczy¢. Policzy¢ trzeba byto nie tylko pieniadze, ale np. upolowane mamuty i
inne mniejsze albo wieksze rzeczy.

Liczby trzeba byto jako$ zapisywac. Powstaty wiec rézne sposoby na to. Na co dzien
posftugujemy sie systemem dziesietnym oraz cyframi arabskimi. Jednak znamy tez np.
cyfry rzymskie. Takze podziat na 10, 100 czy 1000 czesci nie jest wcale tak oczywisty,
jak mogtoby sie wydawac patrzac na jednostki miar takie, jak kilometr, centymetr czy
kilogram. Doba ma przeciez 24 godziny, a godzina 60 sekund.

To wszystko sg pozostatosci po przeszitosci, ktdre uswiadamiajg nam wzglednos$¢ naszego
sposobu liczenia i mozliwos¢ tworzenia nieskonczenie wielu réznych, nowych sposobdéw
zapisywania liczb.

Teoria

Poznamy teraz rézne systemy liczbowe oraz nauczymy sie zapisywac liczby w dowolnym
Z nich i zamienia¢ miedzy nimi.
Na poczatek porcja nieco ciezkostrawnej teorii, ktorg jednak trzeba jakos$ przetrawic :)

Wstep

Zastanéwmy sie przez chwile, w jaki sposdb zapisywane sg liczby. Dowolnie duzg liczbe
jesteSmy w stanie zapisa¢ za pomocg pewnej ilosci cyfr, ktorych mamy do dyspozycji
dziesie¢: 0, 1, 2, 3,4, 5, 6, 7, 8 9. Stad nazwa naszego systemu - system dziesietny.

Jednak cyfra cyfrze nieréwna. Na przyktad w liczbie 123, cyfra 1 ma inne znaczenie niz
cyfra 2 czy 3. Ta pierwsza nazwana bywa cyfrg setek, druga — cyfrg dziesigtek, ostatnia
zas - cyfrg jednosci.

Skad te nazwy? Zauwazmy, ze 1, 10, 100 itd. to kolejne potegi liczby 10 - ktéra jest
podstawg naszego systemu dziesietnego.

10°=1
10t = 10
10%2 = 100
103 = 1000
itd.

System pozycyjny to taki, w ktérym znaczenie znakow zalezy od ich pozycji.
System wagowy to taki, w ktorym kazdej pozycji cyfry przypisana jest inna waga.

Wynika z tego, ze nasze uzywane na co dzien cyfry arabskie w systemie dziesietnym sg
systemem pozycyjnym wagowym. Cyfry rzymskie sgq wylgcznie systemem pozycyjnym,
bo poszczegdlne pozycje cyfr nie majg w nim przypisanych na state wag, takich jak 1, 10,
100 itd.

Zostawmy juz cyfry rzymskie w spokoju i zajmijmy sie normalnymi cyframi arabskimi.
Pomysimy co by byto, gdyby do zapisywania liczb uzywac innej ilosci cyfr - np. tylko
pieciu? Za ich pomocg takze datoby sie zapisa¢ dowolng liczbe. Rodzi sie jednak pytanie:
jakie bytyby to cyfry?

W systemach o podstawie N mniejszej niz 10 uzywamy N pierwszych cyfr, tzn. cyfr od 0
do (N-1) wiacznie. Np. w systemie siédemkowym uzywalibysmy siedmiu cyfr: 0, 1, 2, 3,
4,5i6.

Kiedy zabraknie cyfr, stosuje sie kolejne litery alfabetu. Mogg by¢ mate albo duze, ale
chyba lepiej wygladajg duze. Np. w systemie trzynastkowym uzywalibysmy znakéw: 0, 1,
2,3,4,5,6,7,8,9, A, BiCiwszystkie je nazywalibySmy cyframi.

Wzor

A teraz uwaga, bo bedzie straszny wzér ;)
Pokaze nam on, w jaki sposob ,zbudowana jest” kazda liczba w dowolnym systemie.

L:Zn:al.N"

mneC m<0,n>0 m<n

L to nasza liczba.

N to podstawa systemu (np. 10 dla systemu dziesiethego).

m to indeks ostatniej cyfry (tej z prawej strony), albo inaczej mdwiac liczba przeciwna do
ilosci cyfr po przecinku, np. w liczbie 1984.0415 m=-4.

n to indeks pierwszej cyfry (tej z lewej strony), albo inaczej moéwigc ilos¢ cyfr przed
przecinkiem pomniejszona o 1, np. w liczbie 1984.0415 n=3.

Wynika z tego, ze pierwsza cyfra przed przecinkiem ma indeks 0, poprzednie cyfry majq
kolejne indeksy dodatnie, a cyfry po przecinku majg kolejne indeksy ujemne
numerowane w drugga strone.

i to indeksy kolejnych cyfr.

a; to kolejne cyfry w naszej liczbie.

Przyktad

Zanim jednak pokaze przykfad, musisz wiedzie¢ jeszcze jedng wazna rzecz. Otéz musimy
nauczyc sie oznaczania, w jakim systemie zakodowana (czyli zapisana) jest dana liczba.
Inaczej nie wiedzielibysmy np., czy liczba 320 zapisana jest w systemie czwdérkowym,
piatkowym czy moze dziewigtkowym.

Dlatego wprowadzmy nastepujace oznaczenie: Przyjmujemy, ze system, w jakim
zakodowana jest liczba, zapisywali bedziemy w indeksie dolnym za nawiasem, w ktéry
ujeta jest dana liczba, np. (320)s. Jesli liczba wystepuje bez nawiasu i indeksu umawiamy
sie, ze zakodowana jest w naszym normalnym systemie dziesietnym.

Mozemy juz przystgpi¢ do przeliczenia liczby z jakiego$ systemu na system dziesietny.
Wezmy liczbe (320)s. Rozwijajac ja wg przedstawionego wyzej wzoru mamy:

(320)5 = 3*52 + 2*5! 4+ 0*5% = 3*%25 4+ 2*%5 + 0*1 = 75+ 10 + 0 = 85

Okazuje sig, ze liczba (320)s zapisana w systemie pigtkowym przyjmuje w systemie
dziesietnym postac liczby 85.

Nie mniej wazne od zapisywania jest odpowiednie czytanie liczb. Liczby w systemie
innym niz dziesietny nie wolno czytac tak, jak np. ,trzysta dwadziescia”! Nalezy méwié
zawsze ,trzy, dwa, zero”.

Dlaczego? Zauwaz, co oznaczajg tamte stowa. ,Trzysta dwadziescia” to ,trzy setki” i
~dwie dziesigtki”. Nieswiadomie méwimy wiec w ten sposdb o cyfrze setek i cyfrze
dziesigtek, a te kolejne potegi dziesiatki s wagami kolejnych cyfr jedynie w systemie
dziesietnym.

Patrzac na powyzszy przyktad mozna przy okazji wysnuc¢ wniosek, ze w systemie
pigtkowym mamy do czynienia z ,cyfrg dwudziestek pigtek”, ,cyfra pigtek” i ,cyfrg
jednosci”, a wczesniej zapewne z ,cyfra sto dwudziestek piatek” (bo 53 = 125).

By¢ moze zwrdéciteS uwage na prawidtowosé, ze do zapisania tej samej liczby w systemie
0 nizszej podstawie (mniejszej ilosci dostepnych cyfr) potrzeba wiecej cyfr.

Cwiczenia
Poczawszy od tego miejsca zamieszczat bede zadania do samodzielnego wykonania wraz
z odpowiedziami w przypisie. Mocno zalecam wykonanie przynajmniej niektérych z nich,

poniewaz pozwolg ci one lepiej zrozumiec istote sprawy oraz wycwiczy¢ umiejetnosci
potrzebne do zrozumienia dalszej partii materiatu.

Zadanie 12
Rozkoduj do systemu dziesietnego liczby:
1. (13),
2. (666);
3. (666);;
4. (ABBA.1);3
Praktyka

Jesli po tych teoretycznych rozwazaniach nie bardzo potrafisz wyobrazi¢ sobie to
wszystko, nie martw sie. Wtasnie teraz jest czas i miejsce, by sprébowac wyjasnic
systemy liczbowe troche bardziej ,fopatologicznie”.

Wyobraz sobie mechaniczny licznik, np. gazu, pradu, wody, kilometréw lub jakikolwiek
inny, ktéry masz w domu albo w samochodzie.

(8]
1 56 QA
2 7 B
3 8 0]
4 9 1
5 A 2

Rysunek 1. Liczba jako mechaniczny licznik z tarczami.

Licznik taki sktada sie z kilku tarcz, ktdre mogaq sie obraca¢. Na ich obwodzie napisane sg
kolejne cyfry. Granice miedzy cyfrg ostatnig a pierwsza zaznaczytem na rysunku
niebieska linig (jaki system liczbowy przedstawia rysunek?)3.

Zasada dziatania licznika jest nastepujgca: Krecimy za szarg korbke powodujac obracanie
sie ostatniej tarczy (tej po prawej stronie). Tarcza pokazuje kolejne cyfry. Kiedy dojdzie
do ostatniej i zostanie po raz kolejny obrécona, pokazywata bedzie z powrotem pierwszg
cyfre (czyli 0). Dodatkowo spowoduje wtedy przekrecenie nastepnej tarczy o jedna cyfre
do przodu.

Nietrudno wyobrazi¢ sobie co bedzie, kiedy ta druga tarcza osiggnie ostatnig cyfre. Po
nastepnym obréceniu pokaze 0 oraz spowoduje zwiekszenie o jedng pozycje tarczy
trzeciej. Ogdlnie mozna powiedzie¢, ze kazdy petny obrot tarczy poprzedniej powoduje na
koniec obrocenie tarczy nastepnej (na lewo od niej) o jedng pozycije.

21)1*x7V + 3*¥7° = 1%7 + 3*¥1 =7 + 1 = 8; 2) 6%7% + 6*%7' + 6%7° = 294 + 42 + 6 = 342; 3) 6%11% + 6*11' +
6*11° = 726 + 66 + 6 = 798; 4) 10%¥13° + 11*¥13% + 11*13* + 10*13° + 1*13! = 23982.0769...
3 Cyframi sg znaki od 0 do B, cyfr jest wobec tego 12, a wiec chodzi o system dwunastkowy.

Dlatego w systemie dziesietnym po liczbie 9 nastepuje liczba 10, a po liczbie 99
wystepuje liczba 100.

Cwiczenia
Zadanie 2*

Wyprowadz tabelke kilku kolejnych liczb systemu tréojkowego poczawszy od 0 korzystajac
z wyobrazenia liczby jako licznika z tarczami.

Kodowanie liczb catkowitych

Potrafimy juz rozkodowac liczbe zapisang w dowolnym systemie na system dziesietny.
Pora nauczy¢ sie kodowac liczbe dziesietng w dowolnym innym systemie.

Nie boj sie, nie bedzie kolejnego strasznego wzoru :) Takie przeliczanie to czysta
praktyka i doskonata zabawa. A wiec zaczynamy!

Reszta z dzielenia

Do zabawy potrzebny bedzie kalkulator oraz przypomnienie pewnego dawno
zapomnianego drobiazgu matematycznego. Zanim jeszcze poznaliSmy w szkole
podstawowej utamki, dzielenie liczb wykonywalismy ,pod kreske”. Nad liczbg dzielong
zostawat wynik dzielenia, a na dole otrzymywaliSmy cos$, co nazywato sie reszta.

Wiasnie owa reszta z dzielenia jest czyms, co tutaj i w wielu innych zagadnieniach
programistycznych zajmuje bardzo wazne miejsce. Przypomnijmy sobie wiec, jak to
byto...

10:3 = 3.3333..,, ale rownie dobrze 3 i reszty 1

Dlaczego wtasnie 1?

Po pierwsze dlatego, ze kiedy pomnozymy wynik dzielenia przez dzielnik, iloczyn bedzie
sie roznit od liczby dzielonej wiasnie o reszte (3*3 + 1 = 10).

Po drugie, poniewaz w liczbie 10 trdjka ,miesci sie” 3 razy i zostaje jeszcze liczba 1.

Takie dzielenie z obcieciem reszty nazywane bywa dzieleniem catkowitym, a dziatanie
dajace w wyniku sama reszte z dzielenia (z pominieciem wiasciwego ilorazu) - resztag z
dzielenia albo modulo.

W C++ do dzielenia catkowitego stuzy ten sam operator, co do dzielenia liczb
rzeczywistych: /. Dziata on jako operator dzielenia catkowitego wtedy, kiedy obydwa
argumenty dziatania sg typu catkowitego.

Reszta z dzielenia to dziatanie zdefiniowane tylko dla liczb catkowitych, ktéremu

- odpowiada w C++ operator %.

Zadanie 3°
Uzywajac kalkulatora oblicz, ile bedzie wynosita reszta z dzielenia:
1. 100:10
2. 113:20
3. 512:65
4. 666:7

Popracuj nad metodg obliczania tej reszty i sprobuj zauwazy¢ pewne prawidtowosci
zachodzgce w tym ciekawym dziataniu.

4 Dostepne cyfry to 0, 1 oraz 2. Po przejsciu od 2 do 0 poprzednia cyfra zwieksza sie o jeden. 0, 1, 2, 10, 11,
12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200 itd.

> Wskazowka: wykonaj dzielenie, wynik z obcietg cze$cig utamkowa pomnoz przez dzielnik i odejmij ten iloczyn
od liczby dzielonej. 1) 0; 2) 13; 3) 57;4) 1

Sposob postepowania

OK, pora teraz przej$¢ do sedna sprawy. Naszym zadaniem bedzie zakodowanie liczby
1984 w systemie siodemkowym, czyli znalezienie niewiadomej x:

1984 = (x);

Algorytm postepowania jest bardzo prosty. Dzielimy liczbe przez podstawe systemu,
nastepnie jako nowg liczbe pod spodem zapisujemy wynik, a po prawej stronie
zapisujemy reszte z dzielenia. Powtarzamy tg czynnos$¢ do momentu, kiedy jako wynik z
dzielenia otrzymamy 0.

1984 : 7|3
283 :7|3
40 : 715
5:7]5

0

Tabela 7. Kodowanie liczby catkowitej w systemie siodemkowym.

Postaraj sie dobrze zrozumiec tg tabelke. Zwré¢ tez uwage na ostatnig operacje. 5 da sie
podzieli¢ przez 7. Wtedy reszta wynosi 5, a wynikiem jest 0, co dopiero konczy
obliczenia.

Teraz spisujemy cyfry w kolejnosci od dotu do gory i mamy gotowy wynik :DD
1984 = (5533),

Prawda, ze to proste?

Moze zdazytes juz zwroci¢ uwage na fakt, ze reszta z dzielenia nigdy nie bedzie wieksza
niz liczba, przez ktérg dzielisz. Np. reszta z dzielenia przez 5 wynosi zawsze 0, 1, 2, 3 lub
4, Méwiac ogdlnie: x % n =0, 1, ..., n-1.

Dzieki temu reszty z dzielenia przez podstawe systemu mozemy uzywac jako cyfry w tym
systemie.

Cwiczenia
Zadanie 4°
Zakoduj:
1. liczbe 13 w systemie czworkowym
2. liczbe 64 w systemie jedenastkowym

3. liczbe 666 w systemie dziewigtkowym
4. liczbe (FF);7; w systemie tréjkowym

Kodowanie utamkow

Potrafimy juz kodowac liczby catkowite. Pora na opanowanie umiejetnosci kodowania
utamkow.

Algorytm postepowania jest bardzo podobny do zamiany liczb catkowitych. Tym razem
jednak mnozymy liczbe przez podstawe systemu, jako nowg liczbe pod spodem
zapisujemy czes¢ utamkowg otrzymanego iloczynu (0.costam), natomiast czes¢ catkowitg
(to, co w wyniku otrzymanym po pomnozeniu stato przed przecinkiem) zapisujemy po
prawej stronie.

6 1. (31)4; 2. (509)11; 3. (820)s; 4. (FF)1; = 270 = (101000)5

Zakodujmy tym razem liczbe 0.0415 w systemie dwudziestkowym!

0.0415 * 20| 0
0.83 * 20|G (16)
0.6 * 20|C (12)
0.0

Tabela 8. Kodowanie ultamka w systemie dwudziestkowym.

Uwaga! Podczas kodowania utamkdéw otrzymane cyfry spisujemy, odwrotnie niz w
przypadku liczb catkowitych, od géry do dotu!

A wiec 0.0415 = (0.0GC)y0

Tym razem obliczenia zakonczyty sie otrzymaniem po przecinku wyniku 0 (czyli
otrzymaniem liczby catkowitej). Jednak nie zawsze musi tak by¢. Okazuje sie, ze liczba
posiadajgca w pewnym systemie skonczone rozwiniecie (skonczong ilo$¢ cyfr po
przecinku potrzebng do doktadnego zapisania tej liczby) w innym systemie moze miec
rozwiniecie nieskofczone. Otrzymywaliby$my wtedy coraz to inne wyniki mnozenia (a
moze te same? wowczas mieliby$my do czynienia z utamkiem okresowym) i w koricu
musielibysSmy ograniczy¢ sie do pewnej ustalonej ilosci cyfr po przecinku, zeby nie
zaliczy¢ sie na $mier¢)

Czy potrafisz znalez¢ przynajmniej ogdlny sposéb szacowania, czy utamek bedzie miat w
danym systemie skonczone rozwiniecie?

Cwiczenia
Zadanie 5’
Zakoduj:
1. liczbe 0.3333 w systemie trojkowym
2. liczbe 0.12 w systemie pigtkowym
3. liczbe 0.777 w systemie pietnastkowym
4. liczbe 123.456 w systemie 6semkowym
Przelicz jedng z tych liczb z powrotem na system dziesietny i sprawdz, jak duza

niedoktadnos$¢ powstata w zwigzku z obcieciem jej zakodowanej postaci do skornczonej
ilosci cyfr po przecinku.

Algorytm Hornera - dla leniwych

Jesli wykonates zadanie 5 (a na pewno wykonates — w koncu jestes pilnym uczniem,
ktoéry chce zosta¢ dobrym koderem :) doszedtes pewnie do wniosku, ze zakodowac trzeba
byto osobno czes¢ catkowitg i cze$¢ utamkowa liczby z podpunktu 4. Czy nie istnieje
prostszy sposéb?

Okazuje sie, ze tak - nazywa sie on algorytmem Hornera. Pozwala on za jednym
zamachem zakodowac liczbe rzeczywistg posiadajacg zarowno czesc catkowityg, jak i
utamkowa.

Jest tylko jedno ograniczenie. Trzeba z gory okresli¢ ilo$¢ cyfr, na jakiej maksymalnie
kodowali bedziemy czes$¢ utamkowg - czyli ilo$¢ cyfr po przecinku.

Mato brakowato, a zapomniatbym dodac¢ jedng bardzo wazng, chociaz moze oczywistg
rzecz. W kazdej liczbie zapisanej w kazdym systemie mozemy dopisywa¢ dowolng_ ilo$¢
zer do czesci catkowitej (przed przecinkiem) po lewej stronie i do czesci utamkowej (po

7 1. (0.222222...)s; 2. (0.03)s; 3. (0.B9E959...)ss; 4. (173.351361...)s

| przecinku) po prawej stronie, co nie zmieni nam wartosci tej liczby. Np.:

12.34 = 00012.3400
(2010.012); = (002010.012000);

Zakodujemy teraz liczbe 1984.0415 w systemie siddemkowym. Sposob postepowania
jest nastepujacy:

Przyjmujemy dokfadnos$¢ do 6 cyfr po przecinku. Nastepnie mnozymy naszg kodowang
cyfre przez podstawe systemu podniesiong do potegi takiej, ile cyfr ustalilismy.

1984.0415 * 7% = 1984.0415 * 117 649 = 233 420 498.5
Uff... Tylko spokojnie, nie ma sie czego bac¢. Kalkulator jest po naszej stronie :))

Wyszto cos wielkiego. Co dalej? Najpierw zauwazmy, ze otrzymana liczba zawiera czesé
utamkowa. Niby nie ma w tym niczego nadzwyczajnego, ale tkwi w tym fakcie pewien
szczegodt. Otoz obecnosc w tym iloczynie czesci utamkowej informuje nas, ze danej liczby
nie bedzie sie dato zakodowac z wybrang doktadnoscig precyzyjnie - zostanie ona obcieta
do wybranej ilosci cyfr po przecinku.

Po przyjeciu tej informacji do wiadomosci zaokraglamy wynik do liczby catkowitej, a
nastepnie kodujemy jg w wybranym systemie tak, jak koduje sie zwyczajne liczby
catkowite. Zatem do dzietfa!

233 420 499 ;.
33 345 785
4 763 683 :
680 526 :

97 218 :

13 888 :

1984 :

283 :

40 :

5:

ONNNNNNNNNN
0N WWoONOKF PP

Tabela 9. Kodowanie liczby algorytmem Hornera.

Nie takie to straszne, jak mogtoby sie wydawacé. Spisujemy teraz cyfry od dotu do gory,
tak jak podczas kodowania liczb catkowitych. Otrzymujemy takie co$: 5533020144,

Na koniec, zgodnie ze wstepnym zatozeniem, oddzielamy ostatnie 6 cyfr przecinkiem.
Ostateczny wynik wyglada tak:

1984.0415 = (5533.020144),
Cwiczenia
Pozostaje nam juz tylko przeéwiczy¢ przeliczanie liczb algorytmem Hornera...

Zadanie 6°

Zakoduj uzywajac algorytmu Hornera:

liczbe 11.2222 w systemie tréjkowym
liczbe 10.5 w systemie pigtkowym

liczbe 0.0016 w systemie szesnastkowym
liczbe 2048.128 w systemie dziewigtkowym

b=

81.(102.0200...)s5; 2. (20.2223...)s; 3. (0.0069...)16; 4. (2725.1133...)s

Przelicz jedng z tych liczb z powrotem na system dziesietny i sprawdz, jak duza
niedoktadnos$¢ powstata w zwigzku z obcieciem jej zakodowanej postaci do skornczonej
ilosci cyfr po przecinku.

Podsumowanie

W ten oto sposdb konczymy podrozdziat poswiecony systemom liczbowym i przeliczaniu
liczb. Mam nadzieje, ze cho¢ troche pocwiczytes takie przeliczanie, posiadtes umiejetnosci
zamiany wszelkich liczb - matych i duzych — miedzy dowolnymi systemami oraz dobrze
sie przy tym bawites.

To byta taka mata odskocznia od spraw $cisle zwigzanych z komputerem. W nastepnym
podrozdziale juz do nich wrécimy.

Zanim jednak to nastgpi, radze rozwigzac¢ na koniec kilka zadan, ktore sprawdza twojg
wiedze i umiejetnosci nabyte podczas lektury tego podrozdziatu.

Zadanie 7°
1. Wyprowadz tabelke dwudziestu pierwszych liczb systemu jedenastkowego.
2. Rozkoduj do systemu dziesietnego liczbe (GG.AG);s.
3. Ile bedzie wynosita reszta z dzielenia 5555 : 66 ?
4. Zakoduj dowolng metodg liczbe 2003.1214 w systemie czwdorkowym z
dokfadnoscig do 10 cyfr po przecinku i rozkoduj jg z powrotem na system
dziesietny. Czy zostata zachowana doktadnos$¢? Po czym to mozna stwierdzi¢?

System binarny

Rozpoczynajac kolejny podrozdziat wracamy do tematu komputerdéw i programowania.
Jak zapewne wiesz, komputer postuguje sie systemem dwéjkowym, czyli binarnym.
Do zapisywania wszelkich informacji uzywa wiec tylko dwéch cyfr: 0i 1.

Poznawszy teorie dowolnych systemow liczbowych, skupimy sie teraz na tych naprawde
waznych z naszego punktu widzenia.

Zanim jednak to nastagpi, tym razem wyjatkowo - juz na wstepie — proponuje
rozwigzanie kilku zadan. Pozwolg nam one troche ,wczuc sie w klimat” :)

Zadanie 8*°
1. Wyprowadz tabelke kilku pierwszych liczb systemu dwdjkowego.
2. Ile bedzie wynosifa reszta z dzielenia 25 : 2 ? Jaki jest prosty sposob na
wyznaczanie takiej reszty?
3. Zakoduj liczbe 128 w systemie dwojkowym.
4. Rozkoduj liczbe (010101100.1100),

Teoria

Na poczatek, jak zwykle, musze podac troche teorii. Na szczescie tym razem nie bedzie
wzoréw. W zamian proponuje zapoznanie sie z definicjami kilku (bardziej lub mniej
zwigzanych z omawianym tematem) pojec. Chciatbym, zebys$ poznat ich znaczenie i
nauczyt sie je rozrézniaé, poniewaz bardzo czesto sg one mylone albo uzywane
niepoprawnie.

°1)0,1,2,3,4,5,6,7,8,9,A, 10, 11, 12, 13, 14, 15, 16, 17, 18; 2) 288+16+0.5555...+0.0493 =
304.6048; 3) 11; 4) (133103.0133011001),; doktadnos¢ zostata zachowana

1y)0,1, 10,11, 100, 101, 110, 111, 1000, 1001 itd.; 2) 25%2=1, Sprawdzamy, czy liczba jest parzysta. 3)
10000000; 4) 172.75, zera na poczatku i na koncu sg dla zmyty :)

Informacja - to konstatacja stanu rzeczy, wiadomos¢, powiadamianie spoteczenstwa w
sposéb zobiektywizowany za pomocg $srodkow masowego przekazu albo (co dla nas
najbardziej odpowiednie) obiekt abstrakcyjny, ktory w postaci zakodowanej moze by¢
przechowywany, przesyfany, przetwarzany i uzyty do sterowania.

Dane - to informacje wyrazone w pewnym jezyku. W informatyce sg obiektami, na
ktérych operujg programy.

W praktyce informacje mozna zdefiniowac jako dane wraz ze sposobem ich
interpretowania. Pojecia te dotyczg nie tylko komputerow. Kiedy urzednik przeglada
tabelki z liczbami méwimy, ze przeglada jakies ,dane liczbowe"”. Tymczasem dla niego te
liczby niosg pewne ,informacje”.

~Dane” jest wiec pojeciem ogdlniejszym, ktéry obejmuje informacje bez znanego lub
istotnego w danym kontekscie znaczenia ich tresci. Niniejszy tekst niesie pewne
informacje, ale kiedy nagrasz go na CD-ROM posrod innych plikéw powiesz, ze jest tam
Ltyle a tyle megabajtéw danych”.

Kodowanie - to zapisywanie informacji w okreslony sposob.
Szyfrowanie - to kodowanie informacji w taki sposéb, aby byty nieczytelne dla oséb
niepowotanych, a wiec utajnione.

Szyfrowanie jest wiec tylko specjalnym rodzajem kodowania. Kodowaniem mozemy
nazwac kazde zapisywanie informacji w jakiej$ postaci, choc¢by tekstu w jezyku polskim.
Kazdy sposéb zapisu mozemy nazwac¢ kodem. Mieli$my juz do czynienia z kodowaniem
liczb w réznych systemach (czyli inaczej ich zapisywaniem) i bynajmniej nie robilismy
tego po to, aby kodowane liczby staty sie nieczytelne :)

| Szum to sygnat, ktéry nie niesie zadnych informacji.

Krotka podrdoz w czasie

PrzenieSmy sie teraz na chwile do przesztosci celem zrozumienia, dlaczego wtasnie taki, a
nie inny system liczbowy jest podstawg catej informatyki.

Dawno, dawno temu odkryto elektrycznos¢ i zaczeto budowac rézne urzadzenia. Prad
ptynat sobie w przewodach - raz to mniejszy, innym razem wiekszy — przenoszgc sygnaty
radiowe, dzwiekowe czy obraz telewizyjny. Takie urzadzenia nazywamy analogowymi.

Az tu nagle staneto przed maszynami trudne zadanie wykonywania obliczen. Szybko
okazato sie, ze w matematyce nie moze by¢ (tak jak jest np. w radiu) zadnych szumow
ani trzaskéw. Liczby sg liczbami i muszg pozosta¢ doktadne.

Dlatego kto$ kiedys$ wpadt na genialny pomyst, by w kazdej chwili w przewodzie mdgt by¢
przenoszony tylko jeden z dwdch mozliwych stanéw: prad nie ptynie albo ptynie pewien z
gory ustalony, nie ma napiecia albo jest pewne okreslone napiecie, napiecie jest dodatnie
albo ujemne itp. Te dwa stany mozna reprezentowac przez dwie cyfry systemu
binarnego: 0 oraz 1. Tak powstaty urzadzenia cyfrowe.

Czesto dopiero zmiana stanu jest informacjq. Np. podczas budowy cyfrowego urzadzenia
elektronicznego mozna przyjac taki kod, ze stan identyczny z poprzednim oznacza 0, a
stan odwrotny do poprzedniego oznacza 1.

No dobrze, ale wiasciwie co takiego genialnego jest w ograniczeniu sie tylko do dwdch
standw i dlaczego wybrano wiasnie dwa, a nie np. trzy albo dziesie¢? Dzieki temu
osiggnieto m.in. dwie istotne cechy urzadzen cyfrowych:

> Prostota - elementy wykonujace operacje numeryczne na dwoch mozliwych
stanach budowac jest najprosciej.

> Wiernos¢ kopii - przesytanie oraz kopiowanie danych nie powoduje utraty
jakosci (w przypadku sygnatow, np. dzwieku) ani doktadnosci (w przypadku liczb).

System binarny

Jesli wykonates ostatnie zadanie zauwazyle$s moze, ze operowanie na liczbach w systemie
dwadjkowym jest duzo prostsze, niz w wypadku innych systemow.
Aby jeszcze lepiej pokazac ten fakt, wykonajmy razem dwa przeksztatcenia.

Zakodujemy w systemie binarnym liczbe 1984.

1984 :
992 .
496 :
248 :
124 :

62 :
31
15 :
7
3:
1:

HHEHRFRRFHOOOOOO

ONNNNNNNNNNN

Tabela 10. Kodowanie liczby w systemie binarnym.

A wiec 1984 = (11111000000),.

Jest przy tym troche wiecej pisania, ale za to przy odrobinie wprawy dzielenie dowolnie
duzych liczb przez 2 mozna wykonywac¢ w pamieci, a o reszcie z tego dzielenia (réwnej
zawsze 0 albo 1) swiadczy parzystos$c¢ dzielonej liczby.

Teraz rozkodujmy liczbe (1011.0101),.
22424204224+ 2%=8+2+4+1+0.5+0.0625 = 11.5625

Jak wida¢, nie trzeba pisac przed kazdg rozpisywang cyfrg odpowiednio 0* lub 1*.
Wystarczy tylko spisac te potegi dwdjki, ktorym odpowiada cyfra 1 i pominac te, ktorym
odpowiada cyfra 0.

Zadanie 9'!
1. Zakoduj liczbe 255 w systemie dwdjkowym.
2. Zakoduj liczbe 0.5 w systemie dwdjkowym.
3. Rozkoduj liczbe (01010011),.
4. Rozkoduj liczbe (111100),.
Czy potrafisz wykonywac wiekszos¢ potrzebnych operacji w pamieci?

Dodawanie i odejmowanie

Czeka nas teraz kolejna powtdrka z pierwszych klas szkoty podstawowej. Przypomnimy
sobie bardzo dokfadnie, jak wykonywato sie dodawanie i odejmowanie , pod kreske”.

1) (11111111)5; 2) (0.1),; 3) 83; 4) 60

Przypomnienie zrobimy na normalnych liczbach w systemie dziesietnym, by nastepnie
nauczy¢ sie tych samych operacji dla liczb binarnych.

Dodawanie i odejmowanie liczb dziesietnych

Jako pierwsze wykonajmy proste dodawanie dwdch liczb: 163 + 82 = 245,
1 6
+ 8
=12 4 5
Tabela 11. Dodawanie pod kreske.

3
2

Zaczynajac od prawej strony dodajemy 3+2=5. Nastepnie dodajemy 6+8=14. Wystepuje
tu tzw. przepetnienie. W takiej sytuacji jako wynik danej kolumny zapisujemy ostatnig
cyfre sumy (czyli 4), a poprzednig przenosimy na kolejng kolumne na lewo. Stad 1+1=2.

Teraz zajmiemy sie rzeczg troche trudniejszg - odejmowaniem. Odejmiemy 701326 -
29254 = 672072.

|7 o 1 3 2 6

- | 2 9 2 5 4

=6 7 2 0 7 2
Tabela 12. Odejmowanie pod kreske.

Znowu zaczynajac od prawej strony odejmujemy 6-4=2. Potem prébujemy odja¢ 2-5.
Poniewaz nie da sie wykonac tego na liczbach dodatnich, dokonujemy tzw. pozyczki -
pozyczamy jednostke z liczby nastepnej (3 zamieni sie w 2). Ta jednostka po przejsciu do
naszej kolumny zamienia sie w dziesiagtke (to chyba oczywiste, dlaczego wtasnie
dziesigtka? :) i stad 10+2-5 = 12-5 = 7. Z tréjki po pozyczeniu zostata dwodjka, a 2-2=0.

Dalej sytuacja jest jeszcze bardziej skomplikowana. Znowu musimy dokonac¢ pozyczki, bo
nie da sie odjac¢ 1-9. Tym razem jednak nie ma od kogo pozyczy¢ w nastepnej kolumnie
- stoi tam 0! Pozyczamy wiec od stojgcej dwie kolumny dalej siddemki. Pozyczona
jednostka zamienia sie w poprzedniej kolumnie (tej nad zerem) w dziesigtke. Z tej
dziesiagtki dalej pozyczamy jednostke, ktéra zamienia sie w kolejng dziesigtke. Z siodemki
zostata wiec szostka, zamiast zera jest dziewie¢, a my mozemy wreszcie policzy¢ 11-
9=2.

Dalej jest juz prosto, o ile pamietamy, co gdzie zostato. 9-2=7, a 6-0=0.

Mam nadzieje, ze przypomniates sobie sposdb wykonywania dodawania i odejmowania
pod kreske oraz w petni rozumiesz, jak to sie robi. Szczegdlnie duzo trudnosci sprawiajq
pozyczki podczas odejmowania, dlatego na to szczegdlnie uczulam.

Dodawanie i odejmowanie liczb binarnych

Pora przejs¢ na system dwdjkowy. Dodawali bedziemy zera i jedynki, ale 1+1=2. Jak tg
dwdjke zapisywacé? Zapisywac nigdzie jej nie trzeba. Ona bedzie wystepowata tylko w
pozyczkach i przeniesieniach, a jej kodowanie jako 2 lub jako (10), to kwestia mato
wazna.

Od tej chwili darujemy sobie czasami zapisywanie liczb w nawiasach i z indeksem
| pamietajac, ze zajmujemy sie systemem dwojkowym.

Dodajmy dwie liczby binarne: 101011 + 01000 = 110011.

|1 0o 1 0 1

+ | 0 1.0 0
=1 1 0 0 1

Tabela 13. Dodawanie liczb binarnych.

W zasadzie nie ma tutaj zadnej wielkiej filozofii. 1+0=1, 0+0=0. Dopiero w trzeciej (od
prawej strony) kolumnie wystepuje przeniesienie: 1+1=2, czyli (10),. Dlatego w tej
kolumnie zapisujemy 0, a w nastepnej 1. W koricu 1 + domysine 0 = 1.

Z odejmowaniem tez jest podobnie. Odejmijmy 1001011 - 010110 = 110101.
0 1 1
1 1 0
= i1 0 1 0 1

Tabela 14. Odejmowanie liczb binarnych.

Po kolei: 1-0=1, 1-1=0. Dalej nie mozemy odjg¢ 0-1, dokonujemy wiec pozyczki
sgsiedniej jedynki. Tam zostaje zero, a pozyczona jedynka zamienia sie na (no -
zgadnij! :) dwojke. Stad 2-1=1. Z jedynki w czwartej kolumnie zostato zero. 0-0=0.

Dalej znowu musimy pozyczy¢. Poniewaz obok nie ma nikogo sktonnego do wypozyczenia
potrzebnej nam jedynki, szukamy nieco dalej. Tamta jedynka z ostatniej kolumny
pozycza nam swojq jedyng jedynke zostawiajgc sobie zero. Jedynka przechodzi do
kolumny przedostatniej stajac sie dwodjka, z ktorej dalej pozyczamy jedynke. W kolumnie
przedostatniej zostaje jedynka, a my mozemy wreszcie odjac¢ 2-1=1.

Pamietajac o tym, co zostato w dwoch ostatnich kolumnach, kofnczymy dziatanie
wykonujgc 1-0=1 oraz 0 - domysine 0 = 0, ktérego tez nie musimy zapisac.

W ten oto sposdb opanowalismy umiejetnos$¢ wykonywania podstawowych operacji
arytmetycznych na liczbach dwdjkowych, czyli na tych stynnych komputerowych zerach i
jedynkach :)

Teraz, jak sie zapewne domyslasz, pora na...

Cwiczenia
Zadanie 102
Oblicz:
1. 111 + 111
2. 11001010 + 10101100
3. 111111 - 1101
4, 10000 - 1101

Zamien liczby z jednego z podpunktéw na dziesietne i sprawdz, czy otrzymates
prawidtowy wynik.

System 0semkowy i szesnastkowy

W catej swej ,fajnosci” system binarny ma jedng wielkg wade, ktéra z catg pewnoscig
zdazytes juz zauwazyc¢. Mianowicie liczby w tym systemie sg po prostu dtugie. Do
zapisania kazdej liczby potrzeba wielu cyfr - duzo wiecej, niz w systemach o wiekszej
podstawie.

W sumie nie ma w tym niczego dziwnego — w koricu to jest system o najmniejszej
mozliwej podstawie. Czy nie da sie jednak czegos na to poradzic¢?

12 1) Wskazéwka: 3=(11),, 1110; 2) 101110110; 3) 110010; 4) 11

Rozwigzaniem sg dwa inne systemy liczbowe, ktore réwniez majg duze znaczenie w
informatyce. Sq to system dsemkowy oraz przede wszystkim system szesnastkowy.

Dlaczego wtasnie one sg takie wazne? Nietrudno zauwazy¢, ze 8 i 16 to odpowiednio
trzecia i czwarta potega dwdjki. Co z tego wynika?

Okazuje sie, ze kazdym trzem cyfrom systemu binarnego odpowiada jedna cyfra systemu
o6semkowego, a kazdym czterem cyfrom systemu binarnego odpowiada jedna cyfra
systemu szesnastkowego.

System dziesietny oraz wiekszo$¢ pozostatych nie posiada tej cennej wiasciwosci.

. Zapewne dlatego, ze ich podstawy nie sg potegami dwojki.

Dzieki temu mozna sporzadzi¢ tabelke wszystkich cyfr danego systemu i ich binarnych
odpowiednikéw oraz uzywac jej do prostej zamiany dowolnie dtugich liczb! Utworzenie
takiej tabelki z pewnoscig nie sprawitoby ci problemu. Oto ona:

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 Cc 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Tabela 15. Binarne odpowiedniki cyfr szesnastkowych.

Mozemy teraz przeliczy¢ liczbe 00110101 na system szesnastkowy. W tym celu
grupujemy cyfry po cztery, a nastepnie korzystajac z tabelki zamieniamy je na cyfry
szesnastkowe.

00110101 = 0111 0101 = (75)16
A teraz odwrotnie:
(ABCD)i6 = 1010 1011 1100 1101 = 1010101111001101

Bardzo proste! Rodzi sie tylko jednak pytanie: czy musisz tg tabelke zna¢ na pamiec?
W zasadzie wypadatoby znac, ale w rzeczywistosci nie trzeba jej wkuwac.

Jesli pilnie rozwigzywates wszystkie powyzsze zadania, powiniene$ umie¢ szybko
wyprowadzic¢ sobie kazda potrzebng liczbe liczac po kolei liczby dwojkowe. Spdjrz jeszcze
raz na te zera i jedynki w powyzszej tabelce i sprobuj zauwazy¢ pewne prawidtowosci w
ich rozktadzie. Kazdy moze znalez¢ swdj sposéb na jej zapamietanie.

Z czasem nabedziesz wprawy i wiekszo$¢ operacji wykonasz zawsze w pamieci. Pomoze
w tym pamietanie wag kolejnych cyfr w systemie binarnym. Oczywiscie — znajomos$¢ na
pamiec¢ kolejnych poteg dwdjki jest obowiazkowa dla kazdego programisty!!!

Oto najwazniejsze z nich (tych wiekszych nie musisz wkuwa¢, ale przynajmniej sie z nimi
,opatrz” :)

1,2,4,8,16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 itd.

215 = 32 768 (ok. trzydziesci dwa tysigce)

2% = 65 536 (ok. sze$édziesiat piec tysiecy)

231 = 2 147 483 648 (ok. dwa miliardy)

232 = 4 294 967 296 (ok. cztery miliardy)

Ja wcale nie przesadzam. Te potegi dwodjki i system szesnastkowy sg naprawde az tak
wazne w informatyce i jako programista, nawet uzywajacy jezykow najwyzszego
poziomu, musisz sprawnie sie nimi postugiwac!

Na zakoniczenie wspomne jeszcze o przyktadowych zastosowaniach:

>
>
>

Do zapisywania koloréw w Win32API i DirectX uzywa sie liczb szesnastkowych.
Do zapisywania adreséw komdrek pamieci uzywa sie liczb szesnastkowych.

Do zapisywania atrybutéw plikow w systemie Linux i na serwerach FTP uzywa sie
liczb dsemkowych.

...oraz wymienie kilka waznych wartosci dla 8-cyfrowych liczb binarnych, a takze ich
odpowiedniki dziesietne i szesnastkowe (takze wypadatoby sie ich nauczyc¢ :/)

YVVVVYVYVY

00000000 = (00)16 = 0O

01000000 = (40);s = 64
01111111 = (7F);6 = 127
10000000 = (80);¢ = 128
11000000 = (C0);6 = 192

11111111 = (FF)46 = 256

System dwodjkowy to, jak juz wiesz, inaczej system binarny (w skrocie bin).
System 6semkowy to inaczej system oktalny (w skrocie oct).

. Nasz normalny system dziesietny to inaczej system decymalny (w skrécie dec).
. System szesnastkowy to inaczej system heksadecymalny (w skrécie hex).

Zadanie 11

1.

2
3.
4,
5

Wyprowadz na kartce 16 pierwszych liczb binarnych.

Dopisz do nich odpowiadajace cyfry szesnastkowe.

Postaraj sie wypisac¢ z pamieci jak najwiecej kolejnych poteg dwdjki.

Podziel 256:2, 256:4, 256:8 itp. Wyniki zamien na liczby binarne i szesnastkowe.
Zastanow sie, jak do zapisywania jakich informacji wystarczy, a dla jakich za mata
jest liczba binarna 8-, 16-, 32-cyfrowa?

Zadanie 123

Zamien:
1. liczbe (776)g na system binarny
2. liczbe (BO1A):6 na system binarny
3. liczbe 11010010110 na system szesnastkowy
4. liczbe 205 na system binarny, ésemkowy i szesnastkowy

Zastandéw sie jeszcze raz nad metodami, ktérych uzytes. Jak wiele operacji udato ci sie
przeprowadzi¢ w pamieci? Jak szybko dokonujesz przeksztatcen? Czego powinienes
jeszcze sie douczyc¢?

Bonus

Na zakoniczenie bedzie maty bonus. Pokaze teraz jeszcze jeden, by¢ moze najprostszy
sposob przeliczania liczb dwdjkowych na dziesietne w obydwie strony.

Kazdg liczbe mozna w doktadnie jeden sposdb przedstawic¢ jako kombinacje wag cyfr
danego systemu (tutaj - dwdjkowego) pomnozonych przez cyfre (u nas to nie ma
znaczenia - cyfrg jest 0 albo 1).

Przyktadowo liczbe 205 z poprzedniego zadania mozna zamieni¢ w taki sposéb:

131) 111 111 110; 2) 1011 0000 0001 1010; 3) Wskazdwka: liczbe trzeba uzupetni¢ z lewej strony zerem.
(696)16; 4) 11001101 = (315)s = (CD)16

Y

W liczbie 205 liczba 128 (waga 6smej cyfry) miesci sie raz. Piszemy wobec tego 1.
205-128=77.

W liczbie 77 liczba 64 (waga siédmej cyfry) miesci sie raz. Piszemy 1. 77-64=13.
W liczbie 13 liczba 32 (waga kolejnej cyfry) nie miesci sie ani razu. Piszemy 0.
Liczba 16 tez sie w niej nie miesci — piszemy kolejne 0.

Liczba 8 miesci sie raz - piszemy jedynke. 13-8=5.

W liczbie 5 liczba 4 (waga trzeciej cyfry) miesci sie raz. Piszemy 1. 5-4=1,

W liczbie 1 liczba 2 (waga drugiej cyfry) nie miesci sie. Piszemy zero.

Wreszcie zostaje nam jedynka (waga pierwszej cyfry), ktéra miesci sie w liczbie 1
doktadnie 1 raz - piszemy konczacyg jedynke.

VVVVVYYVY

W ten sposob otrzymujemy: 205 = 11001101.

W drugaq strone tez mozemy fatwo przelicza¢. Warunkiem jest znajomos¢ poteg dwdéjki.
Widzac liczbe 11010011, sumujemy wagi tych cyfr, przy ktérych stoi jedynka. Zreszta...
chyba byfa juz o tym mowa kilka stron wczesniej :)

1+2+ 16+ 64 + 128 = 211

Zadanie 134
Ktérg potega dwojki jest liczba:

1. 16
2. 64
3. 256
4. 1024

Czy potrafisz poda¢ odpowiedzi od razu?

Jednostki informacji

Komputer przechowuje dane w postaci liczb binarnych. Zachodzi potrzeba mierzenia ilosci
tych danych. Powstaty w tym celu specjalne jednostki. Zacznijmy ich omawianie od
poczatku.

Pojedyncza cyfra systemu dwdjkowego - mogaca przechowywac informacje o jednym z
dwdch mozliwych standéw - przyjmujaca wartosci oznaczane jako 0 albo 1, bedaca
najmniejszq i niepodzielng jednostka informacji cyfrowej — to bit.

1 b (mata litera ,b") /bit/

Jeden bit wystarczy do zapisania np. informacji o pici osoby w bazie danych. Przyktadowo
0 mogtoby oznaczac kobiete, a 1 mezczyzne (tylko bez obrazy, mite panie ;) To jednak
stanowczo za mato do zapisywania wiekszosci spotykanych informacji.

Bity grupuje sie. 8 bitéow tworzy bajt. Bajt jest podstawowg jednostka informacji
cyfrowej.
1B = 8 b (duze ,B") /bajt/

Jak nietrudno obliczyé, jeden bajt moze znajdowaé sie w jednym z 28=256 stanéw. To
wystarczajgco duzo, by zapamieta¢ np. wiek osoby w bazie danych. Nikt raczej nie
dozywa wieku wiekszego, niz 255 lat :)

To réwniez wystarczajgco duzo, by kazdemu stanowi (zamiast liczby) przyporzadkowac
pewien znak. Oprocz duzych i matych liter, cyfr, znakéw przestankowych, wszystkich
znakow alfanumerycznych znajdujacych sie na klawiaturze, kilku znakow sterujacych i
innych znalaztoby sie jeszcze miejsce dla réoznych dziwnych symboli.

41)4;2)6;3)8;4) 10

Podobnie jak w wypadku jednostek fizycznych, mozemy tworzy¢ wielokrotnosci jednostek
informacji.

Mate przypomnienie z fizyki:

podwielokrotnos¢ | przedrostek | symbol | wielokrotnos¢ | przedrostek | symbol
10718 atto a 10! deka da
10°*° femto f 102 hekto h
1072 piko p 10° kilo k
10° nano n 10° mega M
10°® mikro m 10° giga G
1073 mili m 1012 tera T
102 centy c 10%° peta P
10! decy d 1018 eksa E

Tabela 16. Podwielokrotnosci i wielokrotnosci jednostek podstawowych.

Poniewaz bit jest niepodzielny, nie istniejg podwielokrotnosci jednostek informaciji.
Istniejg jednak wielokrotnosci.

Tkwi tu jednak pewna rdéznica. Wielokrotnosci jednostek w fizyce sq potegami dziesigtki
(wybieranymi, dla wiekszych wielokrotnosci, co 3). Oczywiscie ma to zwigzek z podstawg
naszego systemu. Czy w informatyce nie powinniSmy zatem bra¢ poteg dwdjki?

Faktycznie, w powszechnym uzyciu sg wielokrotnosci jednostek informacji bedace
potegami dwojki. Pewng analogie do wielokrotnosci jednostek fizycznych pozwala
zachowaé wiasciwos$é moéwiaca, ze 2!° = 1024 ~ 1000.

> 1kB = 2B = 1024 B ~ tysiac (mate , k") /kilobajt/

> 1MB=2%°B = 1024 kB = 1048576 B ~ milion (duze ,M”) /megabaijt/

> 1GB =2B=1024 MB = 1073741824 B ~ miliard (duze ,G") /gigabaijt/

> 1TB=2%"B =1024 GB = 1099511627776 B ~ bilion (duze ,T") /terabajt/

> 1PB=2B=1024 GB = 1125899906842624 B =~ biliard (duze ,P") /petabaijt/
> 1EB=2%B=1024 PB = 1152921504606846976 B ~ trylion (duze ,E")

/eksabajt/

Pojawia sie teraz pytanie: ,Jak duzo to jest?”. Sprobuje na nie odpowiedzie¢ podajac
typowe rozmiary kilku przyktadowych rodzajow danych:

> Tekst - zaleznie od dtugosci jeden dokument zajmuje kilkadziesiagt lub kilkaset
kB.

> Grafika - zaleznie od wielkosci i formatu zapisu jeden obrazek zajmuje
kilkadziesiat lub kilkaset kB, a nawet ponad 1 MB.

» Muzyka - zaleznie od dtugosci jeden utwér zajmuje kilka MB. Jedna minuta
muzyki w formacie MP3 to ok. 1 MB.

> Programy - w zaleznosci od wielkosci petne wersje programow zajmuja od kilku
do kilkuset MB.

> Film - w zaleznosci od dtugosci i jakosci kodowania jeden film zajmuje od kilkuset
MB do ponad 1 GB.

Podam tez pojemnosci przyktadowych nosnikéw danych:

> Dyskietka 3.5” - 1.44 MB

> Pamiec typu flash - zaleznie od ceny kilkadziesigt lub kilkaset MB, a nawet
ponad 1 GB

» CD-ROM - 650 lub 700 MB

> DVD-ROM - w zaleznosci od rodzaju od kilku do kilkunastu GB.
» Dysk twardy - kilkadziesiat lub ponad 100 GB.
> Wszystkie dane udostepniane w sieci P2P - kilka PB.

Idealisci chcieli wylansowa¢ nowe nazwy dla wielokrotnosci bajta — , kibibajt”, ,mebibajt”,
»gibibajt”, ,tebibajt” itd. oraz oznaczenia KiB, MiB, GiB itd., natomiast przez kilobajt,
megabaijt, gigabaijt itd. chcieli oznacza¢ wielokrotnosci bedgce potegami dziesiatki, nie
dwéijki — tak jak jest w fizyce.

Przyzwyczajenia wziety jednak goére nad teoriami i oprdcz nielicznych programoéw, ktore
nazywajq jednostki informacji w ten oryginalny sposdéb, wszyscy méwig i piszg o
kilobajtach i megabajtach majac na mysli potegi dwajki.

Niektorzy oznaczajg kilobajty przez duze K. Ma to podkreslaé inne znaczenie tej
wielokrotnosci, niz tradycyjnego ,kilo”. Nie ma chyba jednak uzasadnienia dla takiego
wybidrczego odrdzniania i dlatego osobiscie zalecatbym uzywanie normalnych kilobajtow
przez mate ,k”, a takze megabajtéw, gigabajtéw itd. jako poteg dwdijki.

Trzeba pamietac, ze 1024 to nie jest 1000 i nie zawsze mozna pomingc¢ tg na pozor
niewielkg roéznice. Przyktadowo uzbierawszy 700000000 B danych chcemy nagra¢ CD-
ROM. Tymczasem w rzeczywistosci jest to tylko 667 MB i zmieszczg sie nam na ptycie
jeszcze 33 MB!

Dlatego trzeba uwazac na tg rdéznice i zawsze pamietac¢, w jakiej wielokrotnosci wyrazony
jest rozmiar danych. Jesli uzywasz Total Commandera i pokazuje on wielkos¢ plikow w
bajtach, zawsze kliknij prawym klawiszem na plik i wybierz Wfasciwosci, aby zobaczy¢
jego faktyczny rozmiar w odpowiedniej wielokrotnosci.

Uwazaj tez na wielkosci podawane przez réznych autoréw i producentéw, np. rozmiary
plikédw czy pojemnosci dyskéw twardych. Niektérzy cwaniacy podajg liczbe miliardéw
bajtéw, zamiast prawdziwych gigabajtéw.

Oprocz rozmiaru danych mozna jeszcze mierzy¢ szybkos¢ ich przesytania (np. przez
Internet). Wielkos$¢ taka wyrazamy w kilobajtach lub tez w kilobitach na sekunde, co
zapisujemy odpowiednio jako: kBps lub kB/s oraz kbps lub kb/s.

1 kB/s = 8 kbps

Zadanie 14

1. Sprawdz, jak duzy jest katalog gtdwny twojego systemu operacyjnego.

2. Sprawdz, jak duze réznice wystepujg w wielkosciach katalogéw z réznymi
zainstalowanymi programami.

3. Jaki duzy jest katalog z twoimi dokumentami?

4. Jak duze sg pojedyncze pliki r6znego rodzaju w katalogu z twoimi dokumentami?

5. Sproébuj policzy¢, ile danych mniej wiecej posiadasz zgromadzonych na wszystkich
CD-ROMach? W jakiej wielokrotnosci wyrazisz tg wielkos¢?

6. Ile mogtyby zajmowac wszystkie napisane przez ciebie programy zebrane w
jednym miejscu?

7. Przemysl: Czy rozmiar danych zawsze idzie w parze z ich wartoscig materialng
albo moralng? Jesli nie, to co o nim decyduje?

Liczby naturalne

Zaczynamy nareszcie omawianie spraw prawdziwie komputerowych. Rozpoczniemy od
doktadnego opisania sposobu, w jaki komputer przechowuje w pamieci najprostsze
mozliwe liczby - liczby naturalne.

Liczby naturalne, jak pamietamy ze szkoty, to liczby catkowite nieujemne, a wiec 0, 1, 2,
3,4,5,6, .., 100 itd.

Reprezentacja liczby naturalnej

W sposobie przechowywania liczby naturalnej w pamieci komputera nie ma zadnej
wielkiej filozofii. Przechowywana jest doktadnie tak, jak zapisalibysmy jg w systemie
dwdjkowym. Kazdy bit stanowi pojedynczg cyfre w tym systemie.

Poswiecajac na przechowywanie liczby okreslong ilos¢ miejsca w pamieci ograniczamy
zakres, jaki moze przyjmowac ta liczba. Jest to inaczej ilos¢ mozliwych kombinacji bitow.
Przykfadowo dla 1 bajta (8 bitow) mozliwych liczb bedzie:

28 = 256
Przyjmujac za pierwsza liczbe 0, otrzymujemy zakres od 0 do 255. Zakresem jest wiec
zawsze liczba mozliwych kombinacji bitdow (czyli 2 do potegi rownej liczbie bitow)

pomniejszona o jeden.

Mozna wyrysowac tabelke z bitami i odpowiadajacymi im wagami. Wszystko to wyglada
doktadnie tak samo, jak podczas omawiania zwyktych liczb binarnych.

bit | 7 |6 | 5]4a]3]2]1]0
waga |[128| 64 [32]| 16| 8 | 4 | 2 | 1

Tabela 17. Budowa liczby naturalnej.

Kolejne bity ponumerowatem (od 0) jedynie dla czytelnosci. Wagi sg, jak widag,
kolejnymi potegami dwojki.

Przykfadowo liczbe 00110001 mozemy rozkodowac sumujac wagi tych bitow, ktérym
odpowiada jedynka.

32+ 16 + 1 =49
Aby zakodowac liczbe wybieramy te wagi, ktérych suma bedzie réwna danej liczbie.
56=32+16+4+ 2+ 1=00110111

Zadanie 15'°

Ilu bitow potrzeba do zapisywania liczb z zakresu 0...655357?

Rozkoduj jednobajtowaq liczbe 11111111,

Zakoduj liczbe 257 na 10 bitach. Czy ten przyktad jest dla ciebie prosty?
Ilu bajtéw potrzeba do zapisywania liczb z zakresu 239...255?

P

151) 16b; 2) 255; 3) 0100000001; 4) Potrzebujemy 255-239=16 réznych kombinacji; 16=2*; potrzeba wiec 4b
= 0.5B; nikt nie powiedziat, ze zakres musi by¢ od zera, ani ze nie mozna moéwic o potowie bajta :P

Liczby naturalne w programowaniu
Poznamy teraz praktyczne sposoby implementaciji liczb naturalnych w jezyku C++.

Typy liczb naturalnych

Przyjeto nazwy na kilka typowych rodzajéw liczb naturalnych réznigcych sie iloscig
wykorzystywanych bajtow (i co za tym idzie — zakresem). Majg one swoje odpowiedniki
posrod typdw danych w jezyku C++. Kazdy z nich ma po dwie nazwy - jedng
standardowgq i drugg (krétszg) zadeklarowang w plikach nagtéwkowych Windows.

Po pierwsze, mamy jeden bajt (ang. byte), czyli 8 bitdw. Odpowiada mu typ unsigned
char, albo inaczej BYTE. Jego zakres to 0...255.

Po drugie, moze byc¢ typ dwubajtowy, czyli 16-bitowy. Dwa bajty nazywane sg stowem
(ang. word). Stad nazwy typdw: unsigned short albo WORD. Zakres takiej liczby to
0...65 535 (65 tysiecy).

Dalej mamy liczbe 32-bitowa, czyli zajmujacq 4 bajty pamieci. Nazywana bywa ona
podwojnym stowem (ang. double word). Odpowiadajace typy w jezyku C++ to unsigned
long oraz DWORD. Zakres wynosi 0...4 294 967 295 (4 miliardy).

Jest tez typ, ktorego rozmiar zalezy od tego, czy uzywany kompilator jest 16-, czy 32-
bitowy. Nazywa sie unsigned int albo UINT. W praktyce jednak kompilatory we
wspotczesnych systemach operacyjnych (w tym Windows i Linux) sg 32-bitowe, a wiec
UINT jest tak naprawde tozsamy z DWORD — ich rozmiary w pamieci i zakresy sg
jednakowe.

Od czasu do czasu styszy sie gtosy, jakoby pojecie ,stowa” (ang. word) oznaczato ten
wiasnie rozmiar zalezny od platformy. W rzeczywistosci jednak okreslenie to pozostato
synonimem dwoch bajtéw (16 bitow).

To jeszcze nie koniec. Dla tych, ktorym nie wystarcza zakres 4 miliardéw, Microsoft
przygotowat w swoim kompilatorze dodatkowy typ: unsigned inté4. Jak sama nazwa
wskazuje, liczby tego typu zajmujg 64 bity, czyli 8 bajtoéw. Ich zakres to 0...18 446 744
073 709 551 615 (18 trylionéw).

Dodatkowe stowo unsigned przed kazdym z typdw oznacza ,bez znaku” i ma podkresla¢,
ze chodzi nam o liczby naturalne (zawsze dodatnie). O liczbach ze znakiem (+ Iub -),
czyli o liczbach catkowitych, bedzie mowa w nastepnym podrozdziale.

To nie pomytka, ze typ char wystepuje tu w roli typu liczbowego. Mimo docelowego
przeznaczenia do przechowywania znakow tekstowych jest to wiasciwy typ liczby 8-
bitowej, jako ze C++ nie wprowadza rozrdéznienia pomiedzy taka liczbg a znakiem.
Bedzie o tym mowa doktadnie w ostatnim podrozdziale.

Zapisywanie wartosci liczb naturalnych

Po zdefiniowaniu zmiennej danego typu, wczesniej czy pdzniej nalezatoby przypisac jej
konkretng wartosc liczbowa. Jezyk C++ pozwala na zapisywanie wartosci (sg to tzw.
state dostowne) w trzech systemach. Nie ma pos$rdd nich systemu binarnego - liczby w
tym systemie bytyby zbyt dtugie, a my przeciez znamy inne, fajniejsze systemy :)

Mozna napisac liczbe naturalng ot tak po prostu. Zostanie ona potraktowana dostownie
jako liczba w systemie dziesietnym i zadziata dla kazdego z wyzej wymienionych typéw, o
ile nie przekracza jego zakresu.

BYTE nl = 255;
WORD n2
DWORD n3 = 0O;

I
~J
~

Jesli zapisywana liczbe poprzedzimy zerem, zostanie potraktowana jako liczba w
systemie dsemkowym, np.:

BYTE nl = 0377;
WORD n2 07;
DWORD n3 = 00;

Z kolei aby zapisa¢ liczbe w naszym upragnionym i najpozyteczniejszym systemie
szesnastkowym ;) nalezy poprzedzic¢ jg znakami 0x (zero i iks). Wtedy juz mozna jej
dalszg czes¢ zaczynac od dowolnej liczby zer bez zadnych konsekwencji. Litery A...F
stosowane w roli cyfr mogg by¢ zaréwno duze, jak i mate.

BYTE nl OxFF;
WORD n2 = 0x07;
DWORD n3 = 0x0;

Na to poprzedzanie liczby zerem trzeba uwazac. Czasami chciatoby sie wyréwnac liczby
réznej dtugosci do jednej kolumny. Pamietaj, by zawsze wstawia¢ w wolnych miejscach
spacje, a nie zera. Inaczej liczba zostanie potraktowana jako zapisana w systemie
o6semkowym i moze miec inng niz oczekiwana wartosc!

Mozna tez dodac¢ na koncu liczby duza litere 1, by wymusi¢ typ long oraz u, by podkresli¢
brak znaku (czyli ze jest to liczba naturalna, a nie ogdlnie catkowita). Potaczenie tych
dwoch liter — czyli dodanie na koncu liczby uL, wymusza jej potraktowanie jako wartosci
typu unsigned long. W praktyce rzadko (jesli w ogdle) zachodzi potrzeba uzywania tych
przyrostkow.

W przypadku takich przyrostkdw wyjatkowo nie ma znaczenia wielkos¢ liter.

Dziatania na liczbach naturalnych

Liczby naturalne mozna dodawac¢ (+), odejmowac (-), mnozyc¢ (*) i dzieli¢ (/). Operator
dzielenia zastosowany na dwodch liczbach naturalnych da wynik rowniez naturalny, a
reszta z dzielenia zostanie obcieta.

Zadanie 16'°
Jakie wartosci beda miaty zmienne po zainicjalizowaniu:

BYTE nl 2+2*2;

WORD n2 = 0Oxff / OxO0F + 2;

DWORD n3 = 10 + 010 + 0x10 + 0x010;
BYTE n4 (0x0A / 02 + 100) * 03;

Reszta z dzielenia

Skoro dzielenie w zbiorze liczb naturalnych obcina reszte, potrzebne jest dziatanie
zwracajgce tq reszte. Dziatanie takie istnieje i oznacza sie je w C++ symbolem procenta:
$. Dzieki swoim ciekawym cechom oraz ogromnemu zastosowaniu w programowaniu
zastuguje na poswiecenie mu osobnego punktu.

¥l =2+ 2*2)=2+4=6;n2=(FF)s/(F)is+2=255/154+2=17+4+2=19; n3 = 10 + (10)s + (10)16
+ (10)16 =10+ 8 + 16 + 16 = 50; n4 = [(A)1s/ (2)s + 100] * (3)s = (10 /2 + 100) * 3 = (5 + 100) * 3 =
105 * 3 = 315 > 255, Biad: liczba poza zakresem!

Wstepne wiadomosci o reszcie z dzielenia byly juz wprowadzone wczesniej. Teraz
zajmiemy sie nim jeszcze bardziej szczegdétowo. Mozemy nawet sporzadzi¢ wykres tej
funkcji:

Rysunek 2. Wykres funkcji naturalnejy = x % 5

Z rysunku mozna wywnioskowac, ze funkcja f(x) = x % c jest okresowa o okresie c i
przyjmuje kolejne wartosci naturalne z zakresu 0...c-1.

Zliczanie

Mozna to wykorzysta¢ przy wielu okazjach. Jedng z najczesciej spotykanych jest
wszelkiego rodzaju zliczanie. Wyobraz sobie, ze pewien licznik odlicza w gdre zwiekszajac
wartos¢ pewnej zmiennej L o jeden. Jesli chcesz, by jakas akcja byta wykonywana tylko
co szosty cykl licznika, napisz:

if (L % 6 == 0)
RobCos () ;

W taki wypadku pierwsze wywotanie funkcji nastgpi juz na samym poczatku — kiedy
zmienna L jest rowna 0. Mozesz to zmieni¢ porownujac otrzymanag reszte z dzielenia z
wartoscig wiekszg od zera, np.:

if (L % 6 == 1)
RobCos () ;

Wtedy funkcja RobCos () wykona siedlat =1, 7, 13, 19, 25 itd.

Losowanie liczb naturalnych

Reszta z dzielenia moze przydac sie takze do generowania liczb pseudolosowych. Stuzaca
do tego funkcja rand () ma takg niemitg ceche, ze zawsze zwraca liczbe naturalng z
zakresu 0..RAND MAX. Wartosc¢ tej statej wynosi u mnie 0x7f£f.

Jak wobec tego wylosowac liczbe naturalng z innego zakresu?

Wystarczy w tym celu wykorzystac¢ wiasciwosc operatora % madwiacg o ,zawijaniu sie” jej
wykresu po osiggnieciu warto$ci maksymalnej. Mozemy skonstruowac taka funkcje:

// Losuje liczbe z zakresu 0...max-1
inline UINT my rand(UINT max)
{

Q

return rand() % max;

}

Warto zauwazy¢, ze tylko dla stosunkowo matych wartosci maksymalnych
prawdopodobienstwo rozktadu wartosci losowanych bedzie w miare rGwnomierne.

Tak naprawde, dziatanie ¢ nie jest niezbedne. Mozna je sobie skonstruowac za pomocg
wyrazenia: (x -y *(x / y).
/ jest tutaj dzieleniem catkowitym.

Operatory bitowe

Oprécz operacji na pojedynczych wartosciach logicznych, dziatania z algebry Boole’a majg
w jezyku C++ takze inne odpowiedniki. Sg nimi operatory bitowe - takie, ktére wykonuja
podang operacje logiczng na wszystkich odpowiadajacych sobie bitach podanych

wartosci.

Najlepiej bedzie pokazac to na przyktadzie. Pierwszym operatorem bitowym, jaki
poznamy, bedzie operator negacji bitowej oznaczany symbolem ~ (tzw. tylda).

~(00100111) = 11011000

lo o 1 0 0 1 1 1
~]1 1 0 1 1 0 0 O

Tabela 18. Przykifad negacji bitowej.

Jak wida¢, kazdy z bitéw zostat zanegowany.

Operatorami dwuargumentowymi sg operator sumy bitowej (alternatywy) oznaczany za
pomocq | (taka pionowa kreska) oraz operator iloczynu bitowego (koniunkcji) oznaczany
jako &. Wykonywane przez nie operacje na poszczegolnych bitach sg analogiczne, jak w
algebrze Boole’a.

00100111 | 11001010 = 11101111

|o 0 1.0 0 1 1 1
|1 1. 0 01 0 1 0O
=1 1 1 0 1 1 1 1

Tabela 19. Przyktad sumy bitowej.

00100111 & 11001010 = 00000010

|o 010 0 1 1 1
&|1 1 0 0 1 0 1 0O
=0 0 0 00O 0O 1 O

Tabela 20. Przyktad iloczynu bitowego.

Istnieja jeszcze operatory przesuniecia bitowego. Ich uzycie umozliwia przesuniecie catej
wartosci o okreslong liczbe bitéw w lewo lub w prawo. Powstate po przesunieciu miejsce
jest wypetnione zerami. Bity ,wypychane” poza komodrke pamieci sg bezpowrotnie
tracone.

Przykitad:

00000101 << 4 = 01010000

Operatory przesuniecia bitowego majg ogromne zastosowanie do konstruowania wartosci
z kilku elementéw, np.:

(1<<3)|](0<<2)|](0<<1)|(1<<0)=(1<<3)]1=1000]1=1001

Nie wolno pomyli¢ operatoréw bitowych z odpowiadajgcymi im operatorami logicznymi.
Trzeba uwazac na tg roznice tym bardziej, ze sq one podobne w zapisie i tatwo tutaj o
pomytke. Tymczasem wartosci takich wyrazen beda zupetnie rézne od oczekiwanych.

LLub”: | - bitowe, || - logiczne
~I": & - bitowe, && - logiczne

|| i && operujq na catych liczbach, a | i & na pojedynczych bitach.

Zadanie 17"/
Oblicz i podaj wynik w systemie binarnym, dziesietnym oraz szesnastkowym:
1. O0x0f | 99
2. (05 << 4) / 4
3. 010 & 0x10 & 10
4. ((0x0f << 3) | (0xf0 >> 4) - 100) * (257 & 24)

Xor

Pozostat nam do omdwienia jeszcze jeden operator bitowy — operator réznicy
symetrycznej zwany tez ,xor” (ang. exclusive or — wyfacznie lub). Jego wynikiem jest w
danym bicie jedynka wtedy i tylko wtedy, kiedy dokfadnie jeden z poréwnywanych bitéw
jest 1 — nie zaden ani nie obydwa.

Oznacza sie go w C++ symbolem ~ (ptaszek). Nalezy zapamieta¢, ze ten znak to wiasnie
xor, a nie, jak to sie czasami oznacza, podnoszenie liczby do potegi. W C++ nie ma
operatora potegowania.

Co takiego daje nam ten operator? Nie bytoby w nim niczego uzytecznego, gdyby nie
niezwykte wtasciwosci dziatania, ktore on wykonuje. Oprdcz tego, ze (podobnie jak
wszystkie pozostate operatory bitowe) jest ono przemienne, dla kazdych x i y zachodzi
takze:

XNy Ny =X

Innymi stowy, po dwukrotnym ,przexorowaniu” liczby przez ta sama wartos$c
otrzymujemy dang liczbe wyjsciowa.

Szyfrowanie

Mozna pokusi¢ sie o napisanie na tej podstawie prostego algorytmu szyfrujgcego. Zasada
jego dziatania bedzie nastepujaca:

J] a k i e § _ ¢ o $
AN i ¢ N i ¢ N i ¢ N
=X X X X X X X X X X

Tabela 21. Szyfrowanie za pomoca xor.

Kazdg komarka tabeli jest tym razem znak, a wiec caty bajt. Wykonujac xor kazdego
znaku przez hasto otrzymujemy pewien szyfrogram, czyli znaki oznaczone tutaj przez
XXXXXXXXXX.

LJakies_cos” ~ ,Nic” = XXXXXXXXXX

171) 1111 | 1100011 = 1101111 = (111);0 = OX6F; 2) (101 << 4) /4 = 1010000/ 4 = 80 / 4 = 20 = Ox14 =
10100; 3) 1000 & 10000 & 1010 = 0; 4) ((1111 << 3) | (11110000 >> 4) - 100) * (100000001 & 11000) =
(1111000 | 1111 - 100) * 0 = 0

Hasto zostaje ,,zawiniete”, czyli powtdrzone wiele razy. Takie powtdrzenie mozna
zaimplementowac (jak mam nadzieje juz sie domyslasz) za pomocg operatora reszty z
dzielenia. Oto funkcja:

std::string SzyfrowanieXor (std::string a Text, std::string a Haslo)
{
std::string Wynik;
for (size t i = 0; i < a Text.size(); i++)
Wynik += a Text[i] ~ a Haslo[i % a Haslo.size()];
return Wynik;

}

Najciekawsze w tym wszystkim jest to, ze ta sama funkcja stuzy do szyfrowania i
deszyfrowania tekstu (lub, odpowiednio, zaszyfrowanego tekstu) przez podane hasto.
Wynika to oczywiscie z wiasnosci, ktorg zaprezentowatem na poczatku.

X X X X X
i ¢ N i c

N

| x x X
IN i ¢

X X
N N
=11 a k i $

Tabela 22. Deszyfrowanie za pomoca xor.

e § _ c o

XXXXXXXXXX A ,Nic” = ,Jakies_cos”

Suma kontrolna

Drugim ciekawym zastosowaniem réznicy symetrycznej jest obliczanie sum kontrolnych,
czyli wartosci skojarzonych z pewnymi danymi i pozwalajgcych zweryfikowac ich
poprawnosc.

Na przyktad jesli piszesz program do kompresji, mozesz w swoim formacie pliku
przewidzie¢ miejsce na sume kontrolng obliczong z kompresowanych danych. Podczas
dekompresiji obliczysz sume jeszcze raz i jesli nie zgodzi sie z tg zapisang, to znaczy ze
dane zostaty uszkodzone. Nalezy wtedy wyswietli¢ btad.

Aby obliczy¢ jednobajtowg sume kontrolng, wystarczy , przexorowac” wszystkie bajty
danych. Oto przyktadowa funkcja:

BYTE SumaKontrolna(void* a Dane, size t a Rozmiar)

{
BYTE Suma = 0;
for (size t i = 0; i < a Rozmiar; i++)
Suma = Suma " static_cast<BYTE*>(a Dane) [1];
return Suma;

}

Przedstawione metody szyfrowania i obliczania sumy kontrolnej nie sg najlepsze czy
najbezpieczniejsze. W powszechnym uzyciu sg duzo lepsze, ale i bardziej skomplikowane.
Wszystko zalezy od tego, do jakiego zastosowania potrzebujesz danego algorytmu oraz
czy masz ochote na napisanie go samemu :)

Te przyktady miaty tylko pokazaé zastosowanie operatora ~.

Flagi bitowe

Mimo matych mozliwosci, czasami potrzebne jest przechowywanie danych na jednym
bicie - czyli wartosci logicznej typu prawda/fatsz. Do operowania na pojedynczej wartosci
tego rodzaju doskonale nadaje sie typ logiczny.

Gorzej, kiedy zachodzi potrzeba utworzenia, przestania czy wykorzystania catego zestawu
takich flag bitowych. Operowanie na osobnych zmiennych typu bool nie bytoby ani
wygodne, ani oszczedne. Dlatego do takich zastosowan wykorzystuje sie pojedyncze bity
liczb naturalnych.

Nauczmy sie operacji na takich flagach bitowych!

Zanim jednak przejdziemy do omawiania tematu, pokaze popularny przyktad uzycia
takich flag. Majg one zastosowanie chociazby w jednym z parametrow znanej wszystkim
funkcji MessageBox () :

MessageBox (0, "Hello world!", "App", MB OK | MB ICONEXCLAMATION) ;

Jako ostatniego parametru powyzsza funkcja oczekuje zestawu informacji réznego
rodzaju, m.in. jakie chcemy miec¢ przyciski i jakg ikonke w tworzonym okienku z
komunikatem. Chociaz niektére mozliwosci wykluczajq sie (trzeba podac tylko jedng z
nich), to wszystko sa wartosci logiczne w rodzaju tak/nie.

Zastanéwmy sie, jak takie flagi skonstruowaé. Z powyzszego przyktadu wida¢ juz, ze ich
uzycie polega na pofaczeniu wybranych flag operatorem bitowym ,lub”. Mozna sie
domysla¢, ze kazda z takich flag to stata o nazwie rozpoczynajacej sie od tego samego
przedrostka i o takiej wartosci, w ktérej jedynka jest tylko jeden bit - w kazdej z nich
inny.

Mozemy juz sprobowac zadeklarowac sobie jakies$ przyktadowe flagi:

const DWORD BLE_FLAGAl = 0x00000001ulL;
const DWORD BLE_FLAGAZ = 0x00000002ulL;
const DWORD BLE FLAGA3 0x00000004uL;
const DWORD BLE_FLAGA4 0x00000008uL;
const DWORD BLE FLAGA5 = 0x00000010uL;

Wartosci trzeba tak dobraé, aby po przeliczeniu na system binarny odpowiadaty
jedynkom w kolejnych bitach liczby (czyli kolejne potegi dwdjki).

Przypisanie wartosci:

DWORD dwWartosc = BLE FLAGAl | BLE FLAGA4;

...zainicjalizuje zmienng dwWartosc wartosciq:
0001 | 1000 = 1001 = 9

Jednak nie wartos$¢ liczbowa jest tutaj istotna, ale wiasnie kombinacja pojedynczych
bitéw. Dzieki takiemu podejsciu mozesz ,upychac” wiele informacji typu logicznego (do
32) w pojedynczej 32-bitowej liczbie naturalnej.

Teraz trzeba jakos$ odczytywac tak upakowane bity. Postuzymy sie w tym celu drugim
operatorem bitowym - ,,i”. Filtrujac za jego pomocg kombinacje flag bitowych przez
pojedynczg flage otrzymujemy, zaleznie od wartosci sprawdzanego bitu w tej wartosci -
tq flage lub 0.

if ((dwWartosc & BLE FLAGA4) == BLE FLAGA4)

std::cout << "Flaga 4 jest ustawiona." << std::endl;
else

std::cout << "Flaga 4 nie jest ustawiona." << std::endl;

Jak wida¢, nie jest to trudne. Ma za to ogromne zastosowanie w programowaniu i jest
wykorzystywane w réznych API. Dlatego trzeba temat flag bitowych dobrze zrozumiec i
nauczy¢ sie ich uzywac.

Liczby catkowite

NauczyliSmy sie wszystkiego o programowaniu liczb naturalnych. Pora rozszerzy¢ zakres
naszego zainteresowania. Zajmiemy sie teraz liczbami catkowitymi, ktore, jak pamietamy
ze szkoty, mogg by¢ ujemne albo dodatnie, np.: -1000, -21, -5, 0, 3, 10, 25 itp.

Wypadatoby zacza¢ od opisania sposobu, w jaki komputer przechowuje tego rodzaju
liczby w pamieci. Zastandwmy sie, jak maégtby on to robic...

Bit znaku

Pierwsze, co przychodzi do gtowy, to zarezerwowanie jednego sposrod bitow liczby na
przechowywanie informacji o znaku.

bit | 7 |e6e|s5]|4a4|3]2]1]0
waga | znak |64 32|16 8 | 4| 2| 1

Tabela 23. Budowa liczby catkowitej z bitem znaku.

Przyktadowo mozna sie uméwié, ze wartos¢ sio)dmego bitu 0 oznacza znak ,+”, a 1
oznacza znak ,-". Moglibysmy wtedy zapisywac liczby w taki sposob:

01010011
11001101

83
-77

Niestety, w przedstawiony sposdb nie koduje sie liczb catkowitych. Rozwigzanie to jest
zte, poniewaz:

00000000 =0
10000000 = -0

Jak wida¢, dwie mozliwe kombinacje bitdw odpowiadajg tej samej wartosci liczbowej. Jest
to ogromna wada z dwoch zasadniczych powodow:

1. Jeden z mozliwych standw marnowatby sie.
2. Zachodzitaby konieczno$¢ uwzgledniania tej niejednoznacznej wartosci w
obliczeniach.

Dlatego prawdziwy sposdb reprezentaciji liczb catkowitych w pamieci komputera jest inny.
Jego nazwa to:

Kod uzupetnien

Wiasciwie, jego petna nazwa to ,kod uzupetnien do dwoch”, a jego oznaczeniem jest
,U2"”. Kod ten opiera sie na bardzo ciekawym pomysle. Przyjrzyj sie wagom, jakie
przypisuje sie poszczegdélnym bitom liczby catkowitej w tym kodzie:

bit | 7 | 6| 5]|4]3]2]1]0
waga | -128 |64 32|16 8| 4| 2| 1

Tabela 24. Budowa liczby catkowitej w kodzie uzupeinien U2.

Jak wida¢, waga ostatniego bitu jest ujemna. Aby w petni rozgryz¢ istote sprawy musimy
przypomnie¢ sobie, ze liczby w kodzie opisanym takimi wagami liczyto sie sumujac wagi
bitéw, ktorym odpowiadata binarna jedynka. Popatrzmy na przyktady:

(00000000)y, = 0

(01010101)y, = 64 + 16 + 4 + 1 = 85
(11110000)y, = -128 + 64 + 32 + 16 = -16
(11000011)y, = -128 + 64 + 2 + 1 = -61

W taki sposdb da sie zakodowac kazdg liczbe z dopuszczalnego zakresu. Ano wiasnie...
Jaki jest zakres liczb w kodzie U2?

Aby odpowiedzie¢ na to pytanie, sprobujmy znalez¢ najmniejszg i najwiekszg liczbe, jakq
da sie zakodowac¢ w ten sposdb. Beda to odpowiednio:

-128
127

(10000000)y,
(01111111)y,

Tak wiec dopuszczalny zakres to -128...127.

Odwrotny kod uzupetnien

Mozna tez wymysli¢ sobie kod uzupetnien o wszystkich wagach ujemnych, a ostatniej
dodatniej.

bit | 7|1 6 | 5] 4| 3] 2]1]0
waga |128|-64 |-32|-16| -8 | -4 | -2 | -1

Tabela 25. Inny kod uzupeinien.

Jak mozna zauwazy¢, jego zakresem bedzie -127...128. Liczby zapisane w takim kodzie
uzupetnien sg oczywiscie niekompatybilne z liczbami zapisanymi w tym pierwszym.

Prawdziwym kodem U2 - tym stosowanym w komputerze - jest ten pierwszy, w ktorym
wszystkie wagi sq dodatnie, ostatnia jest ujemna, a zakres jest na minusie o jeden
wiekszy niz na plusie.

Zadanie 188
Zaprojektuj kod uzupetnien o podanym zakresie. Ile bitéw potrzeba? Narysuj do kazdego
tabelke z wagami.

1. -16...15

2. -15..16

3. -1024...1023

Kodowanie liczb w U2

Aby zapisa¢ liczbe w kodzie uzupetnien wpisujemy jedynki w bitach o takich wagach, aby
ich suma byta rowna danej liczbie. Przypomnijmy tabelke z kodem, ktérego bedziemy
uzywali:

bit | 7 |6 |5]|4a4]3]2]1]0
waga | -128 |64 [32|16| 8| 4| 2| 1

Tabela 26. Kod U2, ktérego uzywamy.

81) 5b, -16,8,4,2,1; 2) 5b, 16,-8,-4,-2,-1; 3) 11b, -1024,512,256,128,64,32,16,8,4,2,1

Przyktady kodowania liczb:

33 =32+ 1 =(00100001)y;
115=64+32+ 16+ 2 + 1 =(01110011)y,

Liczby ujemne zapisuje sie analogicznie. Trzeba tylko ustawi¢ ostatni bit na 1 (aby w
ogdle otrzymac liczbe ujemna) a nastepnie wybierac takie bity dodatnie, ktére zwiekszg
nam wartos$¢ do pozadanej.

-44 = -128 + 64 + 16 + 4 = (11010100);
-2=-128+64+32+16+8+4 + 2 =(11111110);

Teraz twoja kolej :)

Zadanie 19'°
Zapisz w powyzszym kodzie U2 liczby:

1. 120
2. -120
3. -1
4. 64

Dodawanie i odejmowanie w U2

Tutaj bedzie niespodzianka. Okazuje sie, ze mimo swojej nieco dziwnej budowy liczby w
kodzie uzupetnien dodaje sie i odejmuje doktadnie tak samo, jak zwykie liczby binarne!
Trzeba przy tym jednak ignorowac wszelkie pozyczki oraz przepetnienia poza zakres.

Rozpatrzmy przyktady:

0 1.0 01 0 1
1 1 1 1 1 0 1
0

0
1

[1 0 00 1 0 1
U2.

Tabela 27. Dodawanie liczb w kodzie

+

tatwo zauwazy¢, ze nastgpito tutaj przepetnienie. Jak sie jednak okazuje, mimo tego
otrzymany wynik jest poprawny!

74+ (-5) =74-5=69
Teraz zobaczmy, jak wyglada odejmowanie:

0 1.0 01 0 1 O
-1 1 1 1 1 0 1 1
1

=|l0 1 0 0 1 1 1

Tabela 28. Odejmowanie w kodzie U2.

Trzeba byto dokonac pozyczki od nieistniejacej jedynki. Mimo tego udato sie poprawnie
obliczy¢:

74 - (-5) =75+ 5=79

Jasne jest, ze nie zawsze wynik bedzie poprawny. Obliczana liczba moze sie znalez¢ poza
zakresem i wtedy otrzymamy btedny wynik.

191, (01111000)y,; 2. (10001000)y2; 3. (11111111)y,; 4. (01000000)y;

Zadanie 20°°
Oblicz za pomoca kodu uzupetnien:

1. 242

2. -6 + (-6)

3. 127 + (-127)
4. 10 - 20

Odwracanie liczby

Oprocz dodawania i odejmowania, z liczba catkowitg mozna zrobi¢ jeszcze jedna rzecz -
mozna jg odwrécié¢. Odwrdécenie to inaczej zmiana znaku. Liczbg odwrotng do 6 jest liczba
-6, a liczbg odwrotng do -6 jest liczba 6. Odwracanie nazywamy zanegowaniem.

Aby odwrdcic liczbe zapisang w kodzie U2, trzeba wykonaé dwie czynnosci:

1. Zanegowac wszystkie bity liczby (negacja bitowa).
2. Do wyniku doda¢ 1 (normalne dodawanie pod kreske).

Oto przyktad odwracania liczby -78:

|1 o 1 1. 0 0 1 0
~l01 0 0 1 1 0 1

Tabela 29. Odwracanie liczby - etap 1 z 2 (odwracanie bitéw)

0100 1 1 0 1
+lo o o 0o 00 0 1
=|o 1 0 0 1 1 1 O

Tabela 30. Odwracanie liczby - etap 2 z 2 (dodawanie jedynki)

Jak fatwo policzy¢, wyszto 78.

Ta mozliwo$¢ odwracania to dobra wiadomosc. Jesli nie radzisz sobie z kodowaniem liczb
ujemnych poprzez gromadzenie potrzebnych wag, mozesz normalnie zakodowac liczbe
dodatnig, a nastepnie jg odwrdcic!

Liczby catkowite w programowaniu

Nadeszta pora na poznanie praktycznej implementacji liczb catkowitych w jezyku C++.
Oto przeglad dostepnych typéw danych:

» Typ jednobajtowy (8-bitowy) to signed char, albo po prostu char. Jego zakres to
-128...127.

» Typ dwubajtowy (16-bitowy) to short. Jego zakres to -32 768...32 767 (£32
tysigce).

» Typ czterobajtowy (32-bitowy) nazywa sie long. Jego zakresem sg liczby -
2 147 483 648...2 147 483 647 (£2 miliardy).

» Dodatkowym osmiobajtowym (64-bitowym) typem jest int64 o zakresie -
9 223 372 036 854 775 808...9 223 372 036 854 775 807 (+9 tryliondw).

20 1. (00000010)y,+(00000010)y>=(00000100))uz; 2. (11111010)y,+(11111010)y,=(11110100)y5; 3.
(01111111)y,+(10000001)y,=(00000000)y,; 4. (00001010)y-(00010100)y,=(11110110)y;

» Typem o diugosci zaleznej od uzywanego kompilatora jest typ int. W praktyce w
systemach Windows i Linux jest on rownowazny typowi 32-bitowemu. To wtasnie
tego typu uzywa sie najczesciej jako zwyczajnego typu dla liczb catkowitych.

| W rzeczywistosci mozliwych nazw typéw jest duzo wigcej. Po stowie short i long mozna
postaW|c int, a przez analogie to typu inté64 pozostate majg takze nazwy: int8,

. intl6i _ int32. Analogicznie do typdw naturalnych, przed kazdym z przedstaW|onych
' mozna tez postawi¢ stowo signed.

Pozostat do omdwienia juz tylko sposéb zapisywania liczb catkowitych. Jednakze
praktycznie nie ma tu czego opisywac. Liczbe mozna poprzedzi¢ znakiem + lub -. Znak +
znaczy tyle samo, co gdyby go tam w ogdle nie byto - sygnalizuje, ze liczba jest
dodatnia.

Liczby rzeczywiste

Wiemy juz bardzo duzo o tym, jak komputer radzi sobie z dodatnimi i ujemnymi liczbami
catkowitymi. Jednak to nie wystarczy. W obliczeniach zachodzi czasami potrzeba
postuzenia sie liczbami posiadajgcymi cze$¢ utamkowa. Takie liczby nazywamy liczbami
rzeczywistymi.

Mowigc $cislej, liczby rzeczywiste to wszystkie liczby potozone na osi liczbowej. Takze te,
ktérych nie umiemy doktadnie zapisa¢, np. ludolfina (znana jako =), liczba Nepera (znana
jako e) czy pierwiastek z dwoch (takie liczby nazywamy niewymiernymi).

Jak mozna przypuszczac, komputer nie postuguje sie zawsze precyzyjnymi liczbami
wykonujgc operacje na nich tak jak uczen na matematyce, np.:

107+13 10 13

=7
3 3 3

Niektdre zaawansowane programy matematyczne to potrafig. Jednak normalnie
komputer postuguje sie konkretnymi wartosciami liczbowymi i na nich wykonuje
obliczenia tak, jak my robimy to na lekcjach fizyki. Z koniecznosci liczby te majg
doktadnos¢ ograniczong do pewnej ilosci miejsc po przecinku. Liczby niewymierne (jak
wspomniana n czy €) sg reprezentowane przez wartosci przyblizone, np.:

107 +13 10-3.14+13 13.4+13 26.4
3 3 3 3

=8.8

Kod statoprzecinkowy

Zastanéwmy sie, w jaki sposob komputer mogtby przechowywaé w pamieci liczby
rzeczywiste. Aby znalez¢ odpowiedz na to pytanie przyjrzyjmy sie blizej metodzie, jakiej
my uzywamy na co dzien.

Zapisujac liczbe rzeczywista, piszemy np. tak:
1984.0415
Kilka cyfr tworzy normalng czes¢ catkowita liczby, dalej wystepuje przecinek (albo - jak

to jest w programowaniu - kropka) i wreszcie kolejne cyfry, ktore tworzg czesé
utamkowaq. Cata liczba zapisana jest w naszym normalnym systemie dziesietnym.

Gdyby tak zapisywac liczby w taki sam sposdb, ale w systemie binarnym, mozna bytoby
bezposrednio przechowywac je w pamieci komputera! Po prostu — pewna ilo$¢ bitéw
uznawana byfaby za cyfry dwojkowe przed przecinkiem, a pozostate bity za cyfry po
przecinku.

Taki kod - z umieszczonym na state przecinkiem - to kod statoprzecinkowy albo
statopozycyjny.

Dla przyktadu rozwazmy liczbe zapisang w kodzie 16-bitowym. Darujemy sobie doktadne
rozpisanie sposobu jej rozkodowania, bo nie jest to tutaj najwazniejsze.

(11111111.11111111) = 255 + 255/256 = 255.99609375

Musisz wiedzie¢, ze w taki sposob nie koduje sie w komputerze liczb rzeczywistych. Kod
statoprzecinkowy ma wiele wad:

» maty zakres liczb mozliwych do zakodowania
> mata doktadnos¢ (precyzja) czesci utamkowej
» trudny do oszacowania btad obliczen

Mata powtorka z fizyki

Skoro taki sposob jest nienajlepszy — to jak wyglada ten lepszy? Niestety sprawa, do
ktérej zmierzamy, jest dos¢ skomplikowana. Do jej zrozumienia potrzebna bedzie cata
wiedza opisana powyzej (w tym kodowanie liczb naturalnych i kodowanie liczb
catkowitych w kodzie uzupetnien). Zanim przejdziemy do sedna sprawy, musimy tez po
raz kolejny zrobi¢ matg powtdrke ze szkolnej wiedzy.

Przypomnijmy sobie, w jaki sposob zapisuje sie liczby na przedmiocie najblizszym
naszym aktualnym rozwazaniom - czyli na fizyce. Liczby moga by¢ doktadne, np. 100 m.
Mogq by¢ tez przyblizone do kilku miejsc po przecinku, np. 0.3333 A.

Czesto zdarza sig, ze liczba jest bardzo duza albo bardzo mata. Stosuje sie w takim
wypadku odpowiednie przedrostki wielokrotnosci, ktére powtorzyliSmy juz sobie
niedawno. Przykitady: 22 uF, 3 km.

Do obliczen trzeba jednak sprowadzi¢ wielkosci do jednostek podstawowych. Mozna
wtedy napisac tak: 0.000022 F, 3000 m, ale do wyrazania liczb bardzo duzych i bardzo
matych uzywa sie na lekcjach fizyki takiego zapisu:

22*¥10° F, 3*10° m

Przeanalizujmy to doktadnie. Liczba zapisana w taki sposdb skfada sie z dwdch czesci.
Pierwszg jest ,liczba wtasciwa”, a drugq liczba 10 podniesione do jakiej$ potegi.
Nietrudno zauwazy¢, ze potega -6 odpowiada przedrostkowi mikro (n), a potega 3
odpowiada przedrostkowi kilo (k). Dziesigtka to, jak mozna sie domysli¢, po prostu
podstawa naszego systemu.

Tak naprawde, liczba przed znakiem mnozenia to kodowana liczba po tzw. normalizacji.
Np.:

123000000 = 1.23*10°®

Umawiamy sie, ze znormalizowana liczba musi miec jedng cyfre przed przecinkiem i
pozostate po przecinku. W tym celu przesuwamy przecinek o odpowiednig liczbe

miejsc w prawo albo w lewo. Ta liczba miejsc, o jakie przesuneliSmy przecinek, to jest
wiasnie wykfadnik potegi.

W przypadku przesuwania przecinka w lewo potega jest (jak widac¢) dodatnia, a w
wypadku przesuwania przecinka w prawo byfaby ujemna.

Na zakoniczenie tej powtdrki zobaczmy jeszcze, jak mozna rozkodowac tak zapisang
liczbe. Jako przyktad wezmy: 4.79*%10°°.

Mozna jg zwyczajnie wyliczy¢:
4.79%107 = 4.79%1/10° = 4.79*0.00001 = 0.0000479
ale mozna tez po prostu przesung¢ przecinek o 5 pozycji w lewo:

000004.79 > 00000.479 > 0000.0479 > 000.00479 > 00.000479 > 0.0000479

Kod zmiennoprzecinkowy FP2

Zostawmy juz ten niekoderski system dziesigtkowy i wréo¢my do naszego ulubionego
zapisu binarnego :) Mozna wyobrazi¢ sobie przeniesienie wszystkiego, co zostato
napisane wyzej, bezposrednio z systemu dziesietnego na binarny. Jedyng roznica bedzie
liczba 2 zamiast 10 jako podstawa potegi.

No to teraz, niestety, zobaczymy kolejny przerazajacy wzor :0
L=(-1)"-m-N¢

N to podstawa systemu liczbowego.
s to bit znaku.
> 0 oznacza znak +, bo (-1)°=1
» 1 oznacza znak -, bo (-1)! = -1
c (cecha) to wyktadnik potegi, czyli informacja, o ile miejsc przesuwamy przecinek. Moze
by¢ dodatnia albo ujemna. Jest zapisana w kodzie uzupetnien U2.
m (mantysa) to znormalizowana liczba, zapisana jako binarna liczba naturalna.

Taki kod z cechg i mantysa, to kod zmiennoprzecinkowy albo zmiennopozycyjny
(jego oznaczeniem jest FP2 - od ang. floating point). Jego nazwa wzieta sie stad, ze
cecha moze przesuwac przecinek mantysy. Pozwala to na zapisywanie bardzo duzych i
bardzo matych liczb.

To wtasnie w taki sposéb komputer koduje liczby rzeczywiste!

Oprocz dwoch nowopoznanych stdwek — ,mantysa” i ,cecha” - pokazany wzor razem z
objasnieniem powinien nam pomoc w zakodowaniu i rozkodowaniu przyktadowej liczby.
Do liczby zapisanej w kodzie FP2 zawsze trzeba podad, ile bitdow zajetych jest przez
mantyse, a ile przez ceche. Oto budowa przyktadowego kodu FP2:

znak cecha mantysa
bit 15 |14 /13/12/11/10l 9|8 | 7|6 | 5|4 |3[2]1]0
waga| s |-16| 8 | 4 | 2 | 1 |2t |22 |23 |2%|2° |28 |27 |28|29 |20

Tabela 31. Budowa przykiadowego kodu FP2.

Sprawa wydaje sie bardzo trudna i taka jest w istocie. Ale nie trzeba sie ba¢ na zapas.
Sprobujemy teraz powoli zakodowac¢, a potem rozkodowac liczbe w przedstawionym
systemie, a wszystko stanie sie jasne :)

Kodowanie

Chcemy zapisac liczbe 1984.0415 w kodzie FP2 o budowie przedstawionej w powyzszej
tabelce. W tym celu wykonujemy kolejne kroki:

Po pierwsze, ustalamy znak. Liczba jest dodatnia, a wiec:
s=0

Gdyby byta ujemna, wartoscig bitu bytoby 1, a dalej rozpatrywaliby$Smy juz liczbe
przeciwng - czyli pozbawiong tego minusa (dodatnia).

Teraz musimy zapisac tg liczbe w normalnym systemie binarnym. Postuzymy sie
poznanym wczesniej algorytmem Hornera. Jako docelowg liczbe bitdéw przyjmujemy 11 -
o jeden wiecej, niz moze przechowac¢ mantysa (zaraz sie okaze, dlaczego wiasnie tak).

1984.0415 * 21! = 4 063 316.992 ~ 4 063 317

4 063 317 :
2 031 658 :
1015 829 :
507 914 :
253 957 :
126 978 :
63 489 :
31 744 :
15872 :

7 936 :
3968 :
1984 :
992 :

496 .

248 :

124 .

62 :

31:

15

7

3:

1:

PR OOOOOOOOOOHOHRHOHOR

ONNNNNNNNNNNNNNNNNNNNNDN

Tabela 32. Kodowanie liczby algorytmem Hornera.

A wiec mamy:

1984.0415 =11111000000.00001010101

OK, liczba zostata przeliczona. Teraz mozemy zajac¢ sie wiasciwym kodowaniem w FP2.
Dokonujemy normalizacji — czyli przesuwamy przecinek tak, aby przed przecinkiem

znajdowata sie tylko jedna niezerowa cyfra.

Wychodzi co$ takiego:

1.111100000000001010101

Zauwaz, ze jedyng mozliwg niezerowg cyfrg w systemie dwdjkowym jest 1. Skoro przed
przecinkiem zawsze stoi pojedyncza jedynka, mozemy zapamietac, ze ona tam jest i
oszczedzi¢ jednego bitu nie zapisujac jej. Dlatego jg pogrubitem.

- Mozna tez spotka¢ taki kod, w ktérym wszystkie znaki znajduja sie za przecinkiem - tzn.
. przecinek przesuwany jest tak, aby bezposrednio za nim znalazta sie pierwsza jedynka.

- Kolejne wagi mantysy miatyby wtedy postaé 22, 23, 2 itd.

' O ile sie nie myle, komputer w rzeczywistosci uzywa jednak tego kodu z jedynka przed

| przecinkiem.

Ostatecznie mantyse utworzg kolejne cyfry spisane od przecinka dotad, dokad zmieszcza
sie w przyjetej dtugosci mantysy (u nas 10 bitow). Gdybysmy mieli mniej cyfr, niz jest
potrzebne, mantyse uzupetnia sie zerami z prawej strony.

m = 1111000000
Teraz zajmiemy sie cecha. Pamietamy, ze przecinek przesuneliSmy o 10 miejsc w lewo.

Jako ceche trzeba wiec bedzie zapisac liczbe 10 w kodzie U2, ktdrego budowe mozna
wyczytac z tabelki z budowg kodu zmiennoprzecinkowego, w jakim kodujemy.

Trzeba odrdzni¢ ujemna wartos¢ cechy od ujemnej wartoéci mantysy. Tutaj obydwie te
liczby sa dodatnie, ale rownie dobrze mogtyby by¢ ujemne. Ujemna mantysa oznacza, ze
kodowana liczba jest ujemna. Ujemna cecha oznacza, ze podczas normalizowania
przesuwamy przecinek w prawo.

Ostatecznie cecha wyglada tak:

C = (01010)U2

Jak wida¢, mantyse zapisuje sie w postaci liczby naturalnej i osobnego bitu znaku, a
. ceche za pomoca kodu uzupetnien U2. Co wiecej, na schemacie budowy kodu FP2 widac¢,
- ze znak mantysy jest od samej mantysy oddzielony cecha.

Mamy juz wszystkie czesci liczby. Mozemy jg zapisa¢ w petnej okazatosci:
1984.0415 = (0 01010 1111000000)¢p;

Wiem, wiem, to nie byto proste :) Warto wréci¢ w tej chwili to teorii i do tego
przerazajgcego wzoru (moze wyda sie teraz juz odrobine mniej straszny?), a potem

jeszcze raz doktadnie przeanalizowac powyzszy sposdb kodowania liczby.

Dekodowanie

Rozkodujemy teraz tg liczbe z powrotem. Postuzy do tego przedstawiony niedawno wzér.
Rozpatrujgc kolejne elementy, otrzymujemy:

s = 0, a wiec mamy: (-1)°

m = 1111000000, a wiec mamy: 2t + 22 + 23 + 2

c = (01010)y; = 10, a wiec mamy 2'°

Skfadajac to razem zgodnie z wzorem, otrzymujemy do policzenia takie cos:

(-1)°*(2°+ 21+ 22+ 27 + 2% * 210 =

Pogrubiony skfadnik odpowiada jedynce przed przecinkiem, ktérg zapamietaliSmy i nie
zapisalismy w zakodowanej liczbie, oszczedzajac jeden bit. Nie wolno o niej zapomniec
podczas rozkodowania liczby.

Uwazaj na opuszczenie tego sktadnika - to bardzo czesty btad!!!

Kiedy to policzymy, wyjdzie nam od razu rozkodowana liczba. A wiec do dzieta!
(-1)° = 1, a wiec ten element mozemy pominag.

Mozna bytoby teraz zmudnie podnosi¢ te dwdjki do tych ujemnych poteg, ale jest lepsze
wyjscie. Mozemy do kazdego z wykfadnikdédw poteg w nawiasie doda¢ wyktadnik tej potegi
za nawiasem. Ostatecznie mozna liczy¢ dalej tak:

210 4 29 4 28 4 27 4+ 2% =1024 4+ 512 + 256 + 128 + 64 = 1984

Wyszto mniej wiecej tyle, ile powinno byto wyjs¢. Ale chyba czegos tu brakuje :)
Czyzbysmy o czyms$ zapomnieli? Moze nie zrobiliSmy czego$ waznego i dlatego obcieto
nam czes$¢ utamkowag liczby?

Otdz nie! Wszystko jest OK. Po prostu zakodowanie liczby w takim a nie innym systemie
FP2, za pomocg okreslonej ilosci bitdw przeznaczonych na ceche i na mantyse
spowodowato ograniczenie doktadnosci do ilus miejsc po przecinku (tym juz
przesunietym). Stad utrata dalszej czesci liczby.

Po gtebszym zastanowieniu mozna wywnioskowac, ze precyzja liczby zalezy od ilosci
- znakow przeznaczonych na mantyse, a zakres liczby od ilosci znakéw przeznaczonych na
| ceche.

Wartosci specjalne

Standard kodu FP2 przewiduje dodatkowo wartosci specjalne:

1. Maksymalna warto$¢ cechy przy zerowej wartosci mantysy daje w zaleznosci od
bitu znaku mantysy warto$¢ zwang -INF lub +INF (oznaczajacg odpowiednio -« i
+0).

2. Maksymalna wartos$¢ cechy przy jakiejkolwiek niezerowej wartosci mantysy to
tzw. NaN (ang. Not a Number), czyli wartos¢, ktéra nie jest poprawng liczba.

Cwiczenia

Cate to kodowanie liczb rzeczywistych wyglada na bardzo trudne i niewdzieczne.
Zapewniam cie jednak, ze przy odpowiednim podejsciu moze by¢ naprawde doskonatg
zabawa!

Osobiscie lubie czasem zakodowac sobie jakas liczbe w jakims$ wymyslonym kodzie FP2,
potem jg rozkodowac i zobaczy¢, co z niej zostato :D

Zadanie 21°!
1. Rozkoduj liczbe (1 11111 1111111111)py.
2. Zakoduj liczbe 9999 w kodzie FP2.
3. Zakoduj liczbe w -0.2 w kodzie FP2 w 3 bitach cechy i 4 bitach mantysy.
4. Zakoduj w kodzie FP2 liczbe 0.333333..., potem jg rozkoduj i na podstawie wyniku
oszacuj doktadnos$¢ uzywanego w tym dokumencie 16-bitowego formatu.

211, —~(142+4+8+16+32+64+128+256+512+1024)/2048 = -2036/2048 = -0.9941...; 2. (0 01101
0011100001)ep2; 3. (1 101 1001)kp2; 4. (011110 0101010101)gp2 = (1+4+16+64+256+1024)/4096 =
1365/4069 = 0.33325...; doktadnos$¢ wynosi w tym przypadku ok. 3 cyfr dziesietnych po przecinku.

Liczby rzeczywiste w programowaniu

Tradycyjnie juz, poznawszy szczegdty przechowywania danych na poziomie pojedynczych
bitéw, przechodzimy do omawiania rzeczy praktycznych.

Typy zmiennoprzecinkowe

Najpierw poznamy typy danych, ktére pozwalajg programowac operacje na liczbach
zmiennoprzecinkowych.

Pierwszym z typow zmiennoprzecinkowych w C++ jest typ float. Zajmuje 32 bity (4
bajty), z ktérych na ceche przeznaczonych jest 8, a na mantyse 23. Jego zakres wynosi -
1.175494351*10738...3.402823466*10°%, a jego doktadnos¢ to 6...7 znaczacych cyfr.
Nazywany bywa typem zmiennoprzecinkowym o pojedynczej precyzji. To wtasnie on jest
uzywany najczesciej — jego precyzja wystarcza do zdecydowanej wiekszosci zastosowan.

Kolejnym typem jest double. Zmienne tego typu zajmujgq 64 bity (8 bajtow). Cecha
zajmuje 11 bitdw, a mantysa 52. Jego zakres wynosi 2.2250738585072014*10°

308 1.7976931348623158*10%%, jego doktadnosé to 15...16 cyfr. Nazywany bywa (jak
sama jego angielska nazwa wskazuje :) typem o podwodjnej precyzji.

Wprowadzone przeze mnie w tym tekscie pojecia liczb naturalnych, catkowitych czy
rzeczywistych sg zaczerpniete z matematyki. W praktyce do nazywania typow danych
programista postuguje sie nazwami: liczby catkowite bez znaku, liczby catkowite ze
znakiem (x-bitowe) oraz liczby zmiennoprzecinkowe (pojedynczej lub podwdjnej

precyzji).

Zapisywanie wartosci zmiennoprzecinkowych

Domyslnie catkowita wartosc¢ liczbowa traktowana jest jako wartos¢ jednego z typdw
catkowitych. W praktyce czesto kompilator ,domys$la sie”, ze chodzi o typ
zmiennoprzecinkowy i nie zgtasza ostrzezenia. Zawsze warto jednak podkresli¢ typ.

Aby pokazac wszelkie mozliwe sposoby zapisu liczb zmiennoprzecinkowych, najlepiej
bedzie rozpatrzy¢ przyktadowy kod:

float a = 2; // 1
float b = 2.; // 2
float ¢ = 2.0; // 3
float x = 2.0f; // 4
float y = -10.5; // 5
float z = -5.2e-3; // 6

1. Tutaj podana zostaje wartos¢ catkowita, ktora przy mniejszym lub wiekszym
protescie kompilatora zostanie automatycznie potraktowana jako
zmiennoprzecinkowa.

2. Mozna zapisac kropke nie wpisujgc po niej kolejnych cyfr. Przyznasz chyba
jednak, ze nienajlepiej to wyglada? :)

3. Liczbe mozna wpisac¢ normalnie jako cze$¢ przed przecinkiem, kropke (ktéra, jak
pamietamy, w programowaniu robi za przecinek :) oraz cyfry po przecinku.

4. Wartos$¢ zawierajaca przecinek domysinie traktowana jest jako stata dostowna
typu double. Aby wymusi¢ potraktowanie jej jako warto$¢ typu float, nalezy
postawic¢ na jej koncu literke f£.

5. Tutaj nie ma niczego nowego. Chciatem tylko pokaza¢ przez to, ze liczba moze
by¢ ujemna, a po przecinku mogg znajdowac sie cyfry inne niz zero (co, mam
nadzieje, wydaje sie oczywiste :)

6. To jest alternatywny sposdb zapisu liczb zmiennoprzecinkowych — wygodny, jesli
chodzi o liczby bardzo duze oraz bardzo mate. Nazywa sie to notacja naukowa
(ang. scientific notation) i polega na tym, ze piszemy mantyse, dalej literke e oraz
ceche.

Pozostanmy jeszcze przez chwile przy ostatnim przykfadzie. Litera e nie ma niczego
wspolnego ze statg rowna 2.72... To tylko takie oznaczenie (ktére pochodzi od ang.
exponent, czyli wykfadnik), a caty ten zapis znaczy tyle co:

-5.2 ¥ 103 = -0.0052

Wartos¢ zapisana w notacji naukowej domysinie jest typu double i podczas pokazanego
wyzej przypisania kompilator zgtosi ostrzezenie. Nic nie stoi jednak na przeszkodzie, zeby
na koncu tak zapisanej wartosci takze postawi¢ magiczna literke f :)

Ogodlnie warto, abys$ wypracowat sobie (z uwzglednieniem natury uzywanego przez ciebie
kompilatora i jego ostrzezen) standard dotyczacy zaznaczania lub nie zaznaczania typu
przy statych dostownych za pomocg przyrostkow u, L czy £. Ja osobiscie stosuje tylko £.

Operatory zmiennoprzecinkowe

Liczby rzeczywiste, podobnie jak catkowite, mozna dodawac, odejmowac, mnozyc i
dzieli¢. Nie wymaga to chyba dtuzszego komentarza... A moze jednak? :) Okazuje sie, ze
jest o czym pisac.

Po pierwsze: do liczb rzeczywistych nie da sie stosowac operatora reszty z dzielenia .

P drugie, operator dzielenia / wykonuje dzielenie rzeczywiste wtedy, kiedy przynajmniej
jeden z jego argumentow jest rzeczywisty. Jego rezultatem jest wtedy takze liczba
rzeczywista. W przeciwnym wypadku dokonuje dzielenia catkowitego z obcieciem reszty i
jego wynik jest takze catkowity.

float a = 10 / 3;
float b = 10.0f / 3;
float ¢ = 10.0f / 3.0f;

W przedstawionym przyktadzie zmienna b i ¢ bedzie przechowywata wartos¢ 3.3333...,
natomiast wartoscig zmiennej a bedzie liczba 3. W jej przypadku nastgpito dzielenie
catkowite oraz konwersja zwrdconej wartosci catkowitej na liczbe zmiennoprzecinkowa.

Jak wida¢, nalezy zawsze bardzo uwazac na typ argumentéw biorgcych udziat w
dzieleniu. Przy okazji uczulam tez na mozliwos$¢ wystapienia btedu dzielenia przez 0.
Przed nig takze trzeba sie zabezpieczac.

Funkcje matematyczne

Skoro juz jestesmy przy liczbach rzeczywistych, pozwole sobie opisac¢ kilka funkcji
matematycznych. By¢ moze nie wszystkie sg ci znane i nie wszystkich bedziesz czesto
uzywat. Zapewniam jednak, ze wiekszos$¢ z nich wypada znac i jest naprawde uzyteczna
W programowaniu.

Do potegowania nie ma w jezyku C++ (podobnie jak w wiekszosci jezykdw
programowania) operatora takiego, jak do dodawania czy mnozenia. Podnoszenie do
kwadratu mozna sobie tatwo zrobi¢ piszac (x*x). Analogicznie szescian (trzecia potega)
to bedzie: (x*x*x). Do podnoszenia liczby do dowolnej potegi rzeczywistej stuzy funkcja
pow (X, V).

Pierwiastek kwadratowy oblicza funkcja sqgrt (x). Dowolny inny mozna sobie zrobic¢
piszac pow (x, 1.0/y).

Wartos¢ bezwzgledna (modut) z liczby x oblicza funkcja fabs (x) . Istnieje tez jej
odpowiednik do liczb catkowitych: abs (n).

Nie wszystkie funkcje trygonometryczne reprezentowane sg w C++ przez funkcje o
takich samych nazwach, jak nazwy tych funkcji w matematyce. Sinus oblicza funkcja
sin(x), a cosinus: cos (x). Tangens, ktory oznacza sie przez tg, obliczany jest przez
funkcje tan (x). Cotangensa w ogdle nie ma, ale znajac podstawowe wzory
trygonometryczne mozna go tatwo wyliczy¢ w taki sposdb: (1.0/tan(x)). Trzeba tylko
uwazac, zeby nie wykonac dzielenia przez 0.

Funkcje cyklometryczne wygladajg w C++ podobnie do trygonometrycznych. Sg to
odpowiednio funkcje: asin(x), acos (x) i atan (x). Arcus cotangensa znowuz nie ma, ale
mozna go wyliczy¢ za pomocg wyrazenia: (M PI/2.0-atan(x)).

Jeszcze jedng grupg podobnych funkcji sg funkcje hiperboliczne. Odpowiadajg im w
C++ odpowiednio: sinh(x), cosh(x) i tanh (x). Cotangensa hiperbolicznego nie ma, a
wyliczy¢ go mozna ze wzoru: ((exp (x)+exp (-x)) / (exp (x) —exp (-x))) .

Do obliczania logarytmoéw stuzy kilka funkcji réoznigcych sie podstawa. 10g10 (x) oblicza
logarytm dziesietny (o podstawie 10), a 1og(x) oblicza logarytm naturalny (o podstawie
e).

Warto jeszcze wspomniec o funkcji exp (x) podnoszacej statg e do podanej potegi (jest to
funkcja tzw. eksponencjalna). Oczywiscie réoznych funkcji matematycznych jest duzo
wiecej. Po szczegoty odsytam do opisu bibliotek cmath oraz math.h w dokumentacji.

Wszystkie opisane tu funkcje pochodzg z biblioteki math.h. Musisz jg wtaczy¢ do modutu,
w ktédrym uzywasz tych funkcji.

Przedstawione funkcje operujg na liczbach typu double. Kazda ma jednak swoj
odpowiednik dla typu float, ktorego nazwa konczy sie na ,f”, np.: sinf (x), Logl0f (x).

State liczbowe

Od czasu do czasu zachodzi potrzeba uzycia w pisanym programie jednej z ,magicznych”
liczb, jak liczba = czy e. Mozna je sobie zdefiniowa¢ samemu, ale okazuje sie, ze sg one
wpisane takze do standardowych nagtowkow.

Biblioteka math.h zawiera wiele uzytecznych statych, w tym state o nazwach M PI i M E.

Jesli uzywasz DirectX i wigczasz do kodu nagtéwek rozszerzenia D3DX, masz tez do
dyspozycji statq typu float 0 nazwie D3DX_ PI.

Losowanie liczb

Podobnie jak przy okazji omawiania liczb naturalnych, takze teraz zastanowimy sie nad
otrzymywaniem liczb pseudolosowych za pomoca niezbyt wygodnej funkcji rand (). Moje
rozwigzanie wyglada tak:

inline float myrandf ()

{
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX) ;

}

Przedstawiona funkcja zwraca losowg liczbe z zakresu 0.0...1.0 wiacznie dzielgc
otrzymana liczbe catkowitg przez jej maksymalny zakres.

Konwersja z liczbami catkowitymi

Czasami trzeba zamienic liczbe rzeczywistg na catkowitg lub odwrotnie. Oczywiscie
podczas konwersji z liczby zmiennoprzecinkowej na catkowitg reszta zostaje obcieta.

Kompilator potrafi przeprowadzi¢ takg konwersje automatycznie.

float £ 10.5f;
int 1 =
f = 1;

£;

Wyséwietla jednak przy tym ostrzezenia, ze moze zostaé utracona doktadno$¢. Zeby
oszczedzi¢ sobie czytania, lepiej stosowac operatory rzutowania, np.:

float £ = 10.5f;
int i = static cast<int>(f);
f = static cast<float>(i);

Znaki

Rozpoczynamy ostatni podrozdziat. Zajmiemy sie w nim sposobem, w jaki komputer
przechowuje w pamieci tekst.

Chociaz komputery zostaty stworzone do liczenia, od zawsze postugiwaty sie tekstem. Nie
chodzi tylko o mozliwos¢ pisania na komputerze wypracowan i referatow :) Jeszcze zanim
pojawity sie pierwsze systemy okienkowe, ludzie wydawali komputerom polecenia za
pomocg konsoli — czyli tekstowego wiersza polecen.

Na rozgrzewke proponuje wykonanie nastepujacego ciekawego zadanka:

Zadanie 22%?

1. Przyjrzyj sie uwaznie klawiaturze i popatrz na znaki, ktére mozesz za jej pomoca
wprowadzac. Jakich symboli brakuje, a przydatyby sie? Ktére znaki sg
niepotrzebne i rzadko ich uzywasz?

2. Zdobadz i obejrzyj tablice znakdéw ASCII. Ktére z tych znakéw rozpoznajesz jako
mozliwe do wpisania z klawiatury? Ktére ci sie podobajg? Ktére uwazasz za
bezuzyteczne?

3. Zaprojektuj wtasng tablice znakdw skfadajacqa sie z 64 pozycji (tablica 8x8). Ktére
znaki wybierzesz uwazajac je za najistotniejsze i dlaczego? Ilu bitdw potrzeba do
zapisania jednego takiego znaku?

ASCII

Aby zakodowac tekst, trzeba kazdej mozliwej kombinacji bitdw przyporzadkowaé pewien
znak. Najpopularniejszym standardem kodowania znakdéw jest kod ASCII. Jeden znak w

22 1) Jakiej dziedziny dotycza znaki, ktére chetnie by$ dodat? Czy sg to symbole matematyczne? A moze jakie$
inne? Jak mozna sobie bez nich poradzi¢? 2) Tablice znakéw ASCII tatwo znajdziesz w Internecie, choc¢by pod
adresem http://www.asciitable.com/. Czesto byta tez publikowana na koncu starszych ksigzek o
programowaniu, np. o Turbo Pascalu. 3) Zapewne znalaztoby sie w niej miejsce dla duzych liter alfabetu,
polskich liter, cyfr, spacji (odstepu), podstawowych znakoéw przestankowych i kilku innych symboli. Potrzeba
6b.

http://www.asciitable.com/

tym kodzie zajmuje 1 bajt (8 bitow). Standard ten obowigzuje juz od czaséw systemu
DOS az po dzi$ dzien.

Tak naprawde, sam standard ASCII wykorzystuje 7 bitdw. Oznacza to, ze dostepnych
jest 128 roznych kombinacji bitéw, czyli mozna zapisac¢ 128 réznych znakéw. Czy to
duzo, czy mato? To zalezy do czego... Taka ilo$¢ spokojnie wystarczyta, by pierwszym 32
znakom (odpowiadajgacym zakodowanym w systemie binarnym liczbom naturalnym
0...31) przypisa¢ pewne specjalne kody sterujace, a dalej zmiesci¢ cyfry, mate i duze
litery alfabetu facinskiego oraz wszystkie znaki znajdujace sie na klawiaturze.

Na przyktad:

32 = 0x20 = 040 oznacza spacje

43 = 0x2B = 053 oznacza znak ,+"”
57 = 0x39 = 071 oznacza cyfre ,9”
97 = 0x61 = 0141 oznacza litere ,a”

YV V VY

Posrod znakéw ASCII wydzielong grupe stanowig tzw. biate znaki (ang. whitespace) albo
inaczej odstepy. Sq one uznawane za znaki oddzielajagce pewne czesci tekstu. Nalezg do
nich 4 znaki: spacja (kod 32), tabulacja (kod 9), koniec wiersza (kod 10) oraz powroét
karetki (kod 13).

W wielu jezykach (w tym w jezykach programowania, np. C++ czy Pascal oraz w
jezykach opisu, np. HTML czy XML) fakt, jakie sposrod tych znakéw wystapia, w jakiej
ilosci i w jakiej kolejnosci, nie ma znaczenia - kazda taka sekwencja traktowana jest jako
pojedynczy odstep. To dzieki temu mozemy robi¢ wciecia w kodzie i swobodnie go
rozmieszczac (zauwaz, ze wciecie to znak konca wiersza plus pewna liczba spacji lub
tabulacji).

Znaki konca wiersza

Poswiecenia dodatkowej uwagi wymaga temat znakéw uznawanych za koniec wiersza
(linii) w tekscie. Panujg w tej kwestii dwa rézne standardy. W Windows koniec wiersza
zaznacza sie sekwencjg dwoch znakdéw CR (kod 13) i LF (kod 10). W Linux natomiast

samym znakiem LF (kod 10).

Z kompatybilnoscig miedzy tymi formatami bywa réznie. W Linux podwdjny koniec
wiersza najczesciej zinterpretowany zostanie prawidtowo, o ile wiersz moze konczy¢ sie
odstepem i ten odstep zostanie zignorowany.

Notatnik Windows nie odczyta poprawnie dokumentu zapisanego ze znakami konca
wiersza w stylu linuxowym. Na prawidiowe jego wyswietlenie mozesz za to liczy¢ w
programie Lister wbudowanym w Total Commander.

Aby edytowac i zapisywac pod Windows dokumenty ze znakami korica wiersza w stylu
linuxowym, mozesz uzyc¢ jednego z tekstowych edytoréow HTML, np. HomeSite lub
Pajaczek. Trzeba tylko uaktywni¢ specjalng opcje w konfiguracji. Nazywa sie ona
najczesciej zapisywaniem znakow konca wiersza w stylu Unix.

Extended ASCII

256 mozliwych kombinacji bitow w jednym bajcie to jednak za mato, by zapisa¢ znaki

rrrrr "

(nie moéwigc juz o zupetnie innych alfabetach, jak cyrylica czy znaki chifskie).

Dlatego dodatkowe 128 znakdw powstate po uzyciu 6smego bitu nie jest ujednolicone.
Stworzonych zostato wiele tzw. stron kodowych (ang. codepage) uzywajacych tych

dodatkowych znakéw do kodowania liter alfabetéw narodowych, a przy tym réznych
symboli graficznych i innych bardziej lub mniej przydatnych.

Jest z tym niestety duzo problemoéw. Nawet dla samego jezyka polskiego powstato kilka
kodéw. Obecnie uzywane sg dwa:

1. ISO-8859-2 (Latin-2)
2. Windows-1250

Ten drugi jest przez wielu potepiany za to, ze zostat wylansowany przez Microsoft. W
praktyce jednak to wiasnie jego uzywa system Windows, a wielu miejscach Internetu jest
on nie mniej popularny, niz ten pierwszy.

W wielu zastosowaniach, szczegdlnie w Internecie (WWW, e-mail) w nagtéwku
zapisywana jest nazwa standardu kodowania uzytego w danym dokumencie. Pozwala to
zminimalizowa¢ problemy wynikajace z catego tego bataganu.

Aby sprawdzi¢, czy prawidtowo dziatajg w jakims$ programie, systemie czy gdziekolwiek
indziej polskie litery, wpisuje sie zazwyczaj utarty tekst: ,Zazét¢ gesla jazn”. Choc nie
ma on wiekszego sensu, ma to do siebie, ze bedac poprawnym gramatycznie zdaniem

. zawiera w sobie wszystkie polskie literki.

Unikod

Rozwdj Internetu stworzyt koniecznos$¢ wynalezienia lepszego sposobu kodowania
znakow, niz wystuzony juz kod ASCII. Nawet ze swoimi stronami kodowymi ten ostatni
ma wiele ograniczen i sprawia wiele problemdw. Nie mozna chociazby zapisac tekstu w
kilku réznych jezykach w jednym dokumencie.

Pomyslano wiec tak: Wiasciwie, skoro dzisiejsze dyski majg pojemnosci mierzone w
gigabajtach, a obrazki i filmy zajmujg o cate rzedy wielkosci wiecej miejsca niz tekst, po
co nadal ograniczac sie do jednego bajta na znak? Dlaczego nie utworzy¢ kodu, w ktérym
jeden znak zajmowatby, powiedzmy, 2 bajty?

Tak powstat Unikod (ang. Unicode, w skrécie UCS). Warto zda¢ sobie sprawe z faktu, ze
juz za pomoca 2 bajtéw mozna zakodowaé 2 = 65536 réznych znakéw! Dlatego w
unikodzie znalazio sie miejsce dla wszelkich uzytecznych i uzywanych na Swiecie liter,
symboli i znakdéw, a po upowszechnieniu sie tego standardu nasze dzieci bedg juz tylko
od nas styszaty historie, jakie to kiedy$ byly problemy w komputerze z kodowaniem
znakéw :)

Najpopularniejszymi odmianami unikodu sg UTF-8 i UTF-16. W tej pierwszej znak moze
miec¢ rézng dtugosc. Pierwsze 128 znakow pokrywa sie z tablicg ASCII i jest zapisywana
za pomocg jednego bajta, natomiast znaki dodatkowe (np. polskie literki) sq zapisywane
za pomocg specjalnych kilkubajtowych sekwencji. Z kolei UTF-16 okresla standard, w
ktorym kazdy znak zajmuje 2 bajty.

Nie bedziemy sie tutaj doktadnie zajmowali unikodem. Moze w nastepnym wydaniu tego
tekstu... Tymczasem musisz wiedzie¢, ze juz dzi$ wiele programoéw i systemow
operacyjnych uzywa go jako standardowego sposobu kodowania znakdw, a
programowania z uzyciem unikodu warto sie nauczyc.

Po szczegdty odsytam do samego zrddta - na strone http://www.unicode.org/.

http://www.unicode.org/

Znaki w programowaniu

Juz po raz ostatni wracamy do kodu, by krétko oméwié sposdb obchodzenia sie ze
znakami w jezyku C++ w Swietle przedstawionych wyzej faktéw. Zaczniemy, jak zwykle,
od opisania typéw danych.

Pomijajac kwestie unikodu typ jest wiasciwie jeden. Nazywa sie on char. Mozna tez
uzywac zdefiniowanej w nagtéwkach Windows nazwy CHAR. Zmienne tego typu
reprezentujg pojedynczy znak w kodzie ASCII i zajmujq 1 bajt (8 bitow).

Pojedyncze znaki zapisuje sie w C++ w apostrofach, np.:

char ¢ = '"A";

tancuch znakow (ang. string) - inaczej po prostu tekst - reprezentuje w programowaniu
tablica znakéw lub wskaznik do takiej tablicy. tancuchy zapisuje sie w cudzystowach.
Przyjefo sie, ze automatycznie (w sposdb niewidoczny dla programisty) koniec tancucha
oznaczany jest znakiem o kodzie 0.

char strl[] = "Zazdtc gesla jJazn';
char* str2 = strl;
std::cout << str2 << std::endl;

Wykonanie powyzszego kodu pokazuje nam, ze konsola Windows uzywa innej strony
kodowej (takiej pokutujacej jeszcze z czaséw DOS), niz normalne okienka (Windows-
1250).

Poniewaz deklarowanie dostatecznie duzych tablic i dbanie o ich diugos¢ nie nalezy do
zajec przyjemnych, a dynamiczna alokacja pamieci i zonglowanie wskaznikami do
bezpiecznych, twércy jezykéw programowania starajg sie zapewnia¢ mozliwos¢
wygodniejszego operowania na fancuchach. W C++ w sktad biblioteki standardowej STL
wchodzi zdefiniowany w nagtéwku string typ std: :string. Uzywa sie go catkiem
wygodnie, np.:

std::string str = "Blad: Nie wykryto klawiatury!\n";
str += "Nacisénij [ESC], aby wyjs¢c.";
MessageBox (0, str.c str(), "Biad", MB OK | MB ICONERROCR) ;

Jak wida¢, tancuchy mozna swobodnie przypisywac i mozna do nich dopisywac kolejne
czesci. Obiekt str sam zajmuje sie diugoscig tekstu i jego przechowywaniem w pamieci.

Jego funkcja c_str () zwraca wskaznik uzyteczny wszedzie tam, gdzie funkcje (np. te z
Win32API) oczekujq faficucha typu char*. Jest on na tyle inteligentny, ze nie musisz
zajmowac sie jego zwalnianiem.

Niektorzy twierdzg, ze uzywanie takich automatycznych narzedzi spowalnia dziatanie
programu i dlatego jest niedobre. Moim zdaniem nawet jesli istnieje przez to jakas utrata
szybkosci, chcac pisac¢ duze, powazne aplikacje trzeba zapomniec¢ o zajmowaniu sie
szczegdtami tak elementarnych rzeczy jak operacje na taricuchach.

Przy okazji wida¢ tutaj takze uzycie jednego ze znakoéw specjalnych. Znaki takie
wprowadza sie w C++ w postaci ukosnika \ oraz odpowiedniej sekwencji (najczesciej
jednego znaku). Oto ich lista:

» \b - cofacz (ang. backspace)
» \f - nowa strona (ang. form feed)
» \n - nowa linia (ang. new line)

\### — znak ASCII o kodzie podanym w miejscu ,###"” w systemie ésemkowym
\x## - znak ASCII o kodzie podanym w miejscu ,##"” w systemie szesnastkowym

» \r — powrdt karetki (ang. carriage return)
» \t - tabulator poziomy (ang. tabulator)

» \v - tabulator pionowy (ang. vertical tabulator)
> \a - sygnat dZzwiekowy (ang. alarm)

> \\ - ukosnik (ang. backslash)

> \’ — apostrof

> \” - cudzystow

» \0 - znak o kodzie 0 (NULL)

> \? - pytajnik

>

>

Znaki a liczby

Jesli czytate$ uwaznie pamietasz zapewne, ze char to typ znakowy i jednoczesnie typ
reprezentujacy 8-bitowgq liczbe catkowita. Jakie sq tego konsekwencje? Mozna sie
domyslaé, ze zapisany w apostrofach znak to nic innego, jak liczba odpowiadajgca jego
kodowi.

Aby lepiej zilustrowac ten fakt, popatrz na kod zamieniajacy cyfre zapisang jako znak
ASCII na odpowiadajacq jej wartos¢ liczbowa:

char Cyfra = '7";
int Liczba = Cyfra - '0';
std::cout << "Liczba wynosi: " << Liczba << std::endl;

W rozwigzaniu tym wykorzystatem fakt, ze cyfry umieszczone s w tablicy ASCII kolejno
od 0 do 9. Jednakze cyfrze 0 wcale nie odpowiada kod 0, tylko jaki$ tam inny... Dlatego
od kodu cyfry zapisanej w zmiennej odjatem kod cyfry 0 i tak otrzymatem szukang
wartos¢ liczbowa.

Mam nadzieje, ze rozumiesz, skad to sie wzieto?

Maty bonus

Na zakoniczenie tego ostatniego podrozdziatu bedzie maty bonus. Oto krétka, 3-linijkowa
funkcja w C++:

f(){int k;float i,j,r,x,y=-16;while(puts(""),y++<15) for (x
=0;x++<79;putchar (" .:—;!/>) | &IHS*#" [k&l15])) for (i=k=r=0;
J=r*r-i*i-2+4x/25,1i=2*r*i+y/10,j*J+i*i<ll&&k++<111;r=7) ;}

Pochodzi ona ze wstepu do ksigzki pt. Peretki programowania gier, tom 3. Skopiuj jq do
programu, wigcz nagtéwek stdio.h i zobacz, jaki bedzie efekt :)

Podsumowanie

Tak oto dobiegta konca nasza podréz przez bity i bajty. PoznaliSmy sposéb, w jaki
komputer reprezentuje dane na najnizszym poziomie, gromadzi je, zapisuje w pamieci,
przesyta oraz przetwarza. To jest wtasnie istota informatyki!

Wiem, ze reczne przeliczanie liczb na system siédemkowy i wiele innych rzeczy nie bedzie
potrzebne w praktyce programistycznej. Mysle jednak, ze dla prawdziwego pasjonata
programowania takie wiadomosci wydajq sie po prostu ciekawe. Pamietaj: brak
koniecznosci zajmowania sie pewnymi sprawami niskiego poziomu nie zwalnia od ich
znajomosci i rozumienia!

	REPREZENTACJA DANYCH W PAMIĘCI

