
B
REPREZENTACJA DANYCH W

PAMIĘCI

Adam Sawicki „Regedit”
sawickiap@poczta.onet.pl

Jest 10 rodzajów ludzi – ci, którzy
rozumieją kod dwójkowy i ci, którzy go nie

rozumieją.
hakerskie ujęcie socjologii

W tym dodatku mowa będzie o sprawach, które mają miejsce w komputerze praktycznie
na najniższym możliwym poziomie. Będziemy się zajmowali zerami i jedynkami. Poznamy
także sposób, w jaki komputer zapisuje w pamięci wszelkie informacje.
Wbrew temu, co mogłoby się wydawać, wiadomości tego rodzaju nie są bezużyteczne.
Mają one ogromne zastosowanie w praktyce programistycznej. Dlatego radzę podejść do
tej lektury poważnie i postarać się zrozumieć opisane tu, miejscami niestety niełatwe
informacje.
Pamiętaj: Wszystko wydaje się trudne, dopóki nie stanie się proste!

Algebra Boole’a
Wbrew groźnie brzmiącej nazwie, zaczniemy od rzeczy całkiem prostej. Poznamy
podstawowe, teoretyczne zasady operowania na zerach i jedynkach, zwane algebrą
Boole’a lub logiką dwuwartościową.

Boole George (1815-1864), logik i matematyk angielski, od 1849 profesor matematyki
w Queen's College w Cork (Irlandia), członek Towarzystwa Królewskiego (Royal Society)
w Londynie. Zajmował się logiką formalną, rachunkiem prawdopodobieństwa, opracował
algebrę dla zbioru dwuelementowego (algebra Boole'a). Główne dzieło - An Investigation
of The Laws of Thought (1854).1

Algebra Boole’a posługuje się jedynie dwiema możliwymi cyframi. Przyjęło się zapisywać
je jako 0 i 1. Można też wyobrazić je sobie jako dwa przeciwne stany – prawda (ang.
true) i fałsz (ang. false), stan wysoki (ang. high – w skrócie H) i niski (ang. low – w
skrócie L), gruby i chudy, yin i yang czy cokolwiek innego :)

Działania

Na tych dwóch dostępnych liczbach definiuje się kilka podstawowych działań.

Negacja

Jest to działanie jednoargumentowe oznaczane symbolem ~ (tzw. tylda – czyli taki
wężyk pisany nieco u góry :) Bywa też oznaczane przez takie coś: ¬ lub przez pisany za
negowanym wyrażeniem apostrof: ‘. Możnaby je porównać znanej z normalnej

1 Źródło: http://wiem.onet.pl/

http://wiem.onet.pl/

matematyki zamiany liczby na przeciwną za pomocą poprzedzającego znaku minus -. Tak
jak liczba –5 jest przeciwna, do liczby 5, tak ~x oznacza stan przeciwny do stanu
oznaczonego przez x. Ponieważ w logice dwuwartościowej wartości są tylko… dwie,
nietrudno jest wypisać tabelkę dla tego działania:

x ~x
0 1
1 0

Tabela 1. Wartości logiczne negacji

Jak widać, zanegowanie wartości powoduje jej zamianę na wartość przeciwną, czyli drugą
spośród dwóch możliwych.

Można jeszcze dodać, że negacja nazywana bywa też przeczeniem, a jej słownym
odpowiednikiem jest słowo „nie” (ang. not). Jeśli głębiej zastanowisz się nad tym,
wszystko okaże się… logiczne! Stan, który nie jest zerem – to jedynka. Stan, który nie
jest jedynką – to zero :D

Koniunkcja

Przed nami kolejne działanie kryjące się pod tajemniczą nazwą. Jest to działanie
dwuargumentowe, które można porównać znanego nam mnożenia. Symbolizuje go taki
oto dziwny znaczek przypominający daszek: ∧.

Mnożąc jakąkolwiek liczbę przez 0, otrzymujemy 0. Z kolei 1*1 daje w wyniku 1.
Identycznie wynika iloczyn wartości Boole’owskich. Skonstruujmy więc tabelkę:

x y x ∧ y
0 0 0
0 1 0
1 0 0
1 1 1

Tabela 2. Wartości logiczne koniunkcji

Koniunkcja bywa też nazywana iloczynem, a odpowiadającym jej słowem jest „i”.
Faktycznie możemy zauważyć, że aby działanie dało w wyniku jedynkę, jedynką muszą
być obydwa argumenty działania: pierwszy i drugi.

Alternatywa

Skoro jest mnożenie, powinno być też dodawanie. Pan Boole o nim nie zapomniał, więc
mamy kolejne działanie. Jego symbol jest przeciwny do symbolu koniunkcji (odwrócony
daszek) i wygląda tak: ∨.

Tylko dodawanie dwóch zer daje w wyniku zero. Jeśli choć jednym ze składników jest
jedynka, wynikiem dodawania jest liczba większa od zera – 1 albo 2. Ponieważ dwójka w
algebrze Boole’a nie występuje, zamienia się na… nie nie! Nie „zawija się” z powrotem na
zero, ale zostaje jakby „obcięta” do jedynki.
Tabelka będzie więc wyglądała tak:

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 1

Tabela 3. Wartości logiczne alternatywy

Słówkiem odpowiadającym alternatywie jest „lub”. Widzimy, że wynikiem działania jest
1, jeśli wartość 1 ma przynajmniej jeden spośród argumentów działania – pierwszy lub
drugi. A więc wszystko się zgadza.

Różnica symetryczna

Działanie to jest często pomijane w podręcznikach logiki. Tymczasem jego znacznie z
punktu widzenia programisty jest ogromne. Jak bardzo – to okaże się później.

Na razie zajmijmy się jego zdefiniowaniem. Aby sporządzić tabelkę, przyda się angielska
nazwa tej operacji. Brzmi ona exclusive or (w skrócie xor) – co oznacza „wyłącznie lub”.
Aby w wyniku otrzymać 1, jedynką musi być koniecznie tylko pierwszy lub tylko drugi
argument tego działania, nie żaden ani nie obydwa.

x y x ⊕ y
0 0 0
0 1 1
1 0 1
1 1 0

Tabela 4. Wartości logiczne różnicy symetrycznej

To by było na tyle, jeśli chodzi o operacje logiczne konieczne do wprowadzenia cię w
świat komputerowych bitów. Aby jednak twoja wiedza z dziedziny zwanej logiką (tak,
tak! – na pierwszym roku informatyki jest osobny przedmiot o takiej nazwie, na którym
uczą właśnie tego! :) była pełna, opiszę jeszcze szybciutko pozostałe dwa działania.

Ekwiwalencja

Ekwiwalencja to inaczej równoważność i odpowiada jej nieco przydługie stwierdzenie o
treści: „wtedy i tylko wtedy, gdy”. Daje ono w wyniku jedynkę wtedy i tylko wtedy, gdy
obydwa argumenty są takie same. Symbolizuje go taka zwrócona w obydwie strony
strzałka: ⇔. Można więc utożsamiać to działanie z równością.

x y x ⇔ y
0 0 1
0 1 0
1 0 0
1 1 1

Tabela 5. Wartości logiczne ekwiwalencji

Implikacja

To zdecydowanie najbardziej zakręcone i najtrudniejsze do zapamiętania działanie
logiczne. Cieszmy się więc, że programista raczej nie musi go pamiętać :)

Inna nazwa implikacji to wynikanie, a odpowiadające mu stwierdzenie brzmi: „jeżeli …, to
…”. Oznaczane jest strzałką skierowaną w prawo: ⇒. Oto jego tabelka:

x y x ⇒ y
0 0 1
0 1 1
1 0 0
1 1 1

Tabela 6. Wartości logiczne implikacji

Logicznego wyjaśnienia takiej a nie innej postaci tej tabelki nawet nie będę próbował się
podjąć. Przejdźmy teraz lepiej do dalszej części logiki, by jak najszybciej mieć ją już za
sobą :)

Aksjomaty

Poznamy teraz kilka prostych wzorów, które ukażą nam podstawowe zależności pomiędzy
poznanymi działaniami logicznymi.

Przemienność

a ∨ b = b ∨ a
Dodawanie też jest przemienne – jak w matematyce.
a ∧ b = b ∧ a
Mnożenie też jest przemienne.

Łączność

(a ∨ b) ∨ c = a ∨ (b ∨ c)
Dodawanie jest łączne – jak w matematyce.
(a ∧ b) ∧ c = a ∧ (b ∧ c)
Mnożenie też jest łączne.

Rozdzielność

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
Mnożenie jest rozdzielne względem dodawania.
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
Dodawanie też jest rozdzielne względem mnożenia – a w normalnej matematyce nie!!!

Identyczność

a ∨ 0 = a
a ∨ 1 = 1
a ∧ 0 = 0
a ∧ 1 = a
To wynika bezpośrednio z tabelek.

Dopełnienie

a ∨ ~a = 1
a ∧ ~a = 0
Bo jeden z argumentów zawsze będzie przeciwny do drugiego.

Prawa De Morgana

~(a ∨ b) = ~a ∧ ~b
~(a ∧ b) = ~a ∨ ~b

Logika w programowaniu

Uff… Pora wrócić do sedna sprawy, czyli do programowania. Tutaj często zachodzi
potrzeba reprezentowania jednego z dwóch stanów. Przykładowo zmienna Blad w stanie
1 oznaczałaby fakt wystąpienia błędu, a w stanie 0 fakt jego niewystąpnienia – czyli że
wszystko jest w porządku.

Typ logiczny

Typem danych w C++ reprezentującym wartości logiczne jest bool. Dwa stany
reprezentowane są zaś przez specjalne słowa kluczowe – true oraz false. Można też
używać identyfikatorów TRUE i FALSE pisanych dużymi literami.

Dla przykładu weźmy linijkę kodu, który tworzy wspomnianą zmienną i wstępnie ją
inicjalizuje:

bool Blad = false;

Wyrażenia logiczne

Oprócz bezpośrednich wartości true oraz false, wartości typu bool zwracane są także
przez operatory porównania takie, jak == (równy), != (różny), < (mniejszy), >= (większy
lub równy) itp.

Każda okazja jest dobra, aby po raz kolejny przestrzec przez typowym błędem, na który
(niestety?) w całej swej zachwalanej przez wielu elastyczności pozwala język C++.
Chodzi o różnicę pomiędzy operatorem przypisania =, a operatorem porównania
(równości) ==. Ten pierwszy także zostanie zawsze zaakceptowany w miejscu drugiego,
ale z pewnością spowoduje inny (czyli nieprawidłowy) efekt.
Uważaj na to!

Wartość innego typu – np. liczba – także może zostać potraktowana jako wartość
logiczna. Przyjęte zostanie wówczas 0 (fałsz), jeśli wartość jest zerowa (np. liczbą jest 0)
oraz prawda w każdym innym wypadku.
Ta cecha języka C++ jest całkiem przydatna, ponieważ pozwala sprawdzać „niezerowość”
zmiennych (szczególnie wskaźników) bez posługiwania się operatorem porównania, np.:

if (Zmienna)
 std::cout << "Zmienna jest niezerowa";

Operatory logiczne

Poznane na początku działania algebry Boole’a mają, jak można się domyślać, swoje
odpowiedniki w języku programowania. W C++ są to symbole odpowiednio:

 ! – negacja – przeczenie – „nie” (jednoargumentowy)
 && - koniunkcja - iloczyn - „i” (dwuargumentowy)
 || - alternatywa – suma – „lub” (dwuargumentowy)

Najłatwiej zrozumieć istotę działania tych operatorów zapamiętując ich słowne
odpowiedniki (te w cudzysłowach). Rozważmy przykład:

int Liczba = 7;
void* Wskaznik = 0;
bool Wartosc = (!(Wskaznik) || (Liczba == 6)) && false;

Wskaznik jest zerowy, a więc jego wartością logiczną jest false. Po zanegowaniu
zmienia się w true. Zmienna Liczba nie jest równa 6, a więc wartością porównania
będzie false. true lub false daje true, true i false daje w końcu false. Zmienna
Wartosc zostanie więc ostatecznie zainicjalizowana wartością false.
Postaraj się przeanalizować to jeszcze raz, dokładnie, i w pełni wszystko zrozumieć.

Systemy liczbowe
Odkąd wynaleziono pieniądze i koło, ludzie zaczęli kręcić interesy :) Równie dawno temu
ludzie zaczęli liczyć. Policzyć trzeba było nie tylko pieniądze, ale np. upolowane mamuty i
inne mniejsze albo większe rzeczy.

Liczby trzeba było jakoś zapisywać. Powstały więc różne sposoby na to. Na co dzień
posługujemy się systemem dziesiętnym oraz cyframi arabskimi. Jednak znamy też np.
cyfry rzymskie. Także podział na 10, 100 czy 1000 części nie jest wcale tak oczywisty,
jak mogłoby się wydawać patrząc na jednostki miar takie, jak kilometr, centymetr czy
kilogram. Doba ma przecież 24 godziny, a godzina 60 sekund.

To wszystko są pozostałości po przeszłości, które uświadamiają nam względność naszego
sposobu liczenia i możliwość tworzenia nieskończenie wielu różnych, nowych sposobów
zapisywania liczb.

Teoria

Poznamy teraz różne systemy liczbowe oraz nauczymy się zapisywać liczby w dowolnym
z nich i zamieniać między nimi.
Na początek porcja nieco ciężkostrawnej teorii, którą jednak trzeba jakoś przetrawić :)

Wstęp

Zastanówmy się przez chwilę, w jaki sposób zapisywane są liczby. Dowolnie dużą liczbę
jesteśmy w stanie zapisać za pomocą pewnej ilości cyfr, których mamy do dyspozycji
dziesięć: 0, 1, 2, 3, 4, 5, 6, 7, 8 i 9. Stąd nazwa naszego systemu – system dziesiętny.

Jednak cyfra cyfrze nierówna. Na przykład w liczbie 123, cyfra 1 ma inne znaczenie niż
cyfra 2 czy 3. Ta pierwsza nazwana bywa cyfrą setek, druga – cyfrą dziesiątek, ostatnia
zaś – cyfrą jedności.
Skąd te nazwy? Zauważmy, że 1, 10, 100 itd. to kolejne potęgi liczby 10 – która jest
podstawą naszego systemu dziesiętnego.

100 = 1
101 = 10
102 = 100
103 = 1000
itd.

System pozycyjny to taki, w którym znaczenie znaków zależy od ich pozycji.
System wagowy to taki, w którym każdej pozycji cyfry przypisana jest inna waga.

Wynika z tego, że nasze używane na co dzień cyfry arabskie w systemie dziesiętnym są
systemem pozycyjnym wagowym. Cyfry rzymskie są wyłącznie systemem pozycyjnym,
bo poszczególne pozycje cyfr nie mają w nim przypisanych na stałe wag, takich jak 1, 10,
100 itd.

Zostawmy już cyfry rzymskie w spokoju i zajmijmy się normalnymi cyframi arabskimi.
Pomyślmy co by było, gdyby do zapisywania liczb używać innej ilości cyfr – np. tylko
pięciu? Za ich pomocą także dałoby się zapisać dowolną liczbę. Rodzi się jednak pytanie:
jakie byłyby to cyfry?

W systemach o podstawie N mniejszej niż 10 używamy N pierwszych cyfr, tzn. cyfr od 0
do (N-1) włącznie. Np. w systemie siódemkowym używalibyśmy siedmiu cyfr: 0, 1, 2, 3,
4, 5 i 6.

Kiedy zabraknie cyfr, stosuje się kolejne litery alfabetu. Mogą być małe albo duże, ale
chyba lepiej wyglądają duże. Np. w systemie trzynastkowym używalibyśmy znaków: 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B i C i wszystkie je nazywalibyśmy cyframi.

Wzór

A teraz uwaga, bo będzie straszny wzór ;)
Pokaże nam on, w jaki sposób „zbudowana jest” każda liczba w dowolnym systemie.

∑
=

=
n

mi

i
iΝaL

m, n ∈ C, m ≤ 0, n ≥ 0, m ≤ n

L to nasza liczba.
N to podstawa systemu (np. 10 dla systemu dziesiętnego).
m to indeks ostatniej cyfry (tej z prawej strony), albo inaczej mówiąc liczba przeciwna do
ilości cyfr po przecinku, np. w liczbie 1984.0415 m=-4.
n to indeks pierwszej cyfry (tej z lewej strony), albo inaczej mówiąc ilość cyfr przed
przecinkiem pomniejszona o 1, np. w liczbie 1984.0415 n=3.
Wynika z tego, że pierwsza cyfra przed przecinkiem ma indeks 0, poprzednie cyfry mają
kolejne indeksy dodatnie, a cyfry po przecinku mają kolejne indeksy ujemne
numerowane w drugą stronę.
i to indeksy kolejnych cyfr.
ai to kolejne cyfry w naszej liczbie.

Przykład

Zanim jednak pokażę przykład, musisz wiedzieć jeszcze jedną ważną rzecz. Otóż musimy
nauczyć się oznaczania, w jakim systemie zakodowana (czyli zapisana) jest dana liczba.
Inaczej nie wiedzielibyśmy np., czy liczba 320 zapisana jest w systemie czwórkowym,
piątkowym czy może dziewiątkowym.

Dlatego wprowadźmy następujące oznaczenie: Przyjmujemy, że system, w jakim
zakodowana jest liczba, zapisywali będziemy w indeksie dolnym za nawiasem, w który
ujęta jest dana liczba, np. (320)5. Jeśli liczba występuje bez nawiasu i indeksu umawiamy
się, że zakodowana jest w naszym normalnym systemie dziesiętnym.

Możemy już przystąpić do przeliczenia liczby z jakiegoś systemu na system dziesiętny.
Weźmy liczbę (320)5. Rozwijając ją wg przedstawionego wyżej wzoru mamy:

(320)5 = 3*52 + 2*51 + 0*50 = 3*25 + 2*5 + 0*1 = 75 + 10 + 0 = 85

Okazuje się, że liczba (320)5 zapisana w systemie piątkowym przyjmuje w systemie
dziesiętnym postać liczby 85.

Nie mniej ważne od zapisywania jest odpowiednie czytanie liczb. Liczby w systemie
innym niż dziesiętny nie wolno czytać tak, jak np. „trzysta dwadzieścia”! Należy mówić
zawsze „trzy, dwa, zero”.
Dlaczego? Zauważ, co oznaczają tamte słowa. „Trzysta dwadzieścia” to „trzy setki” i
„dwie dziesiątki”. Nieświadomie mówimy więc w ten sposób o cyfrze setek i cyfrze
dziesiątek, a te kolejne potęgi dziesiątki są wagami kolejnych cyfr jedynie w systemie
dziesiętnym.

Patrząc na powyższy przykład można przy okazji wysnuć wniosek, że w systemie
piątkowym mamy do czynienia z „cyfrą dwudziestek piątek”, „cyfrą piątek” i „cyfrą
jedności”, a wcześniej zapewne z „cyfrą sto dwudziestek piątek” (bo 53 = 125).

Być może zwróciłeś uwagę na prawidłowość, że do zapisania tej samej liczby w systemie
o niższej podstawie (mniejszej ilości dostępnych cyfr) potrzeba więcej cyfr.

Ćwiczenia

Począwszy od tego miejsca zamieszczał będę zadania do samodzielnego wykonania wraz
z odpowiedziami w przypisie. Mocno zalecam wykonanie przynajmniej niektórych z nich,
ponieważ pozwolą ci one lepiej zrozumieć istotę sprawy oraz wyćwiczyć umiejętności
potrzebne do zrozumienia dalszej partii materiału.

Zadanie 12

Rozkoduj do systemu dziesiętnego liczby:
1. (13)7
2. (666)7
3. (666)11
4. (ABBA.1)13

Praktyka

Jeśli po tych teoretycznych rozważaniach nie bardzo potrafisz wyobrazić sobie to
wszystko, nie martw się. Właśnie teraz jest czas i miejsce, by spróbować wyjaśnić
systemy liczbowe trochę bardziej „łopatologicznie”.

Wyobraź sobie mechaniczny licznik, np. gazu, prądu, wody, kilometrów lub jakikolwiek
inny, który masz w domu albo w samochodzie.

Rysunek 1. Liczba jako mechaniczny licznik z tarczami.

Licznik taki składa się z kilku tarcz, które mogą się obracać. Na ich obwodzie napisane są
kolejne cyfry. Granicę między cyfrą ostatnią a pierwszą zaznaczyłem na rysunku
niebieską linią (jaki system liczbowy przedstawia rysunek?)3.

Zasada działania licznika jest następująca: Kręcimy za szarą korbkę powodując obracanie
się ostatniej tarczy (tej po prawej stronie). Tarcza pokazuje kolejne cyfry. Kiedy dojdzie
do ostatniej i zostanie po raz kolejny obrócona, pokazywała będzie z powrotem pierwszą
cyfrę (czyli 0). Dodatkowo spowoduje wtedy przekręcenie następnej tarczy o jedną cyfrę
do przodu.

Nietrudno wyobrazić sobie co będzie, kiedy ta druga tarcza osiągnie ostatnią cyfrę. Po
następnym obróceniu pokaże 0 oraz spowoduje zwiększenie o jedną pozycję tarczy
trzeciej. Ogólnie można powiedzieć, że każdy pełny obrót tarczy poprzedniej powoduje na
koniec obrócenie tarczy następnej (na lewo od niej) o jedną pozycję.

2 1) 1*71 + 3*70 = 1*7 + 3*1 = 7 + 1 = 8; 2) 6*72 + 6*71 + 6*70 = 294 + 42 + 6 = 342; 3) 6*112 + 6*111 +
6*110 = 726 + 66 + 6 = 798; 4) 10*133 + 11*132 + 11*131 + 10*130 + 1*13-1 = 23982.0769...
3 Cyframi są znaki od 0 do B, cyfr jest wobec tego 12, a więc chodzi o system dwunastkowy.

Dlatego w systemie dziesiętnym po liczbie 9 następuje liczba 10, a po liczbie 99
występuje liczba 100.

Ćwiczenia

Zadanie 24

Wyprowadź tabelkę kilku kolejnych liczb systemu trójkowego począwszy od 0 korzystając
z wyobrażenia liczby jako licznika z tarczami.

Kodowanie liczb całkowitych

Potrafimy już rozkodować liczbę zapisaną w dowolnym systemie na system dziesiętny.
Pora nauczyć się kodować liczbę dziesiętną w dowolnym innym systemie.

Nie bój się, nie będzie kolejnego strasznego wzoru :) Takie przeliczanie to czysta
praktyka i doskonała zabawa. A więc zaczynamy!

Reszta z dzielenia

Do zabawy potrzebny będzie kalkulator oraz przypomnienie pewnego dawno
zapomnianego drobiazgu matematycznego. Zanim jeszcze poznaliśmy w szkole
podstawowej ułamki, dzielenie liczb wykonywaliśmy „pod kreskę”. Nad liczbą dzieloną
zostawał wynik dzielenia, a na dole otrzymywaliśmy coś, co nazywało się resztą.

Właśnie owa reszta z dzielenia jest czymś, co tutaj i w wielu innych zagadnieniach
programistycznych zajmuje bardzo ważne miejsce. Przypomnijmy sobie więc, jak to
było…

10:3 = 3.3333…, ale równie dobrze 3 i reszty 1

Dlaczego właśnie 1?
Po pierwsze dlatego, że kiedy pomnożymy wynik dzielenia przez dzielnik, iloczyn będzie
się różnił od liczby dzielonej właśnie o resztę (3*3 + 1 = 10).
Po drugie, ponieważ w liczbie 10 trójka „mieści się” 3 razy i zostaje jeszcze liczba 1.

Takie dzielenie z obcięciem reszty nazywane bywa dzieleniem całkowitym, a działanie
dające w wyniku samą resztę z dzielenia (z pominięciem właściwego ilorazu) – resztą z
dzielenia albo modulo.

W C++ do dzielenia całkowitego służy ten sam operator, co do dzielenia liczb
rzeczywistych: /. Działa on jako operator dzielenia całkowitego wtedy, kiedy obydwa
argumenty działania są typu całkowitego.
Reszta z dzielenia to działanie zdefiniowane tylko dla liczb całkowitych, któremu
odpowiada w C++ operator %.

Zadanie 35

Używając kalkulatora oblicz, ile będzie wynosiła reszta z dzielenia:
1. 100:10
2. 113:20
3. 512:65
4. 666:7

Popracuj nad metodą obliczania tej reszty i spróbuj zauważyć pewne prawidłowości
zachodzące w tym ciekawym działaniu.

4 Dostępne cyfry to 0, 1 oraz 2. Po przejściu od 2 do 0 poprzednia cyfra zwiększa się o jeden. 0, 1, 2, 10, 11,
12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200 itd.
5 Wskazówka: wykonaj dzielenie, wynik z obciętą częścią ułamkową pomnóż przez dzielnik i odejmij ten iloczyn
od liczby dzielonej. 1) 0; 2) 13; 3) 57; 4) 1

Sposób postępowania

OK, pora teraz przejść do sedna sprawy. Naszym zadaniem będzie zakodowanie liczby
1984 w systemie siódemkowym, czyli znalezienie niewiadomej x:

1984 = (x)7

Algorytm postępowania jest bardzo prosty. Dzielimy liczbę przez podstawę systemu,
następnie jako nową liczbę pod spodem zapisujemy wynik, a po prawej stronie
zapisujemy resztę z dzielenia. Powtarzamy tą czynność do momentu, kiedy jako wynik z
dzielenia otrzymamy 0.

1984 : 7 3
283 : 7 3
40 : 7 5
5 : 7 5

0

Tabela 7. Kodowanie liczby całkowitej w systemie siódemkowym.

Postaraj się dobrze zrozumieć tą tabelkę. Zwróć też uwagę na ostatnią operację. 5 da się
podzielić przez 7. Wtedy reszta wynosi 5, a wynikiem jest 0, co dopiero kończy
obliczenia.

Teraz spisujemy cyfry w kolejności od dołu do góry i mamy gotowy wynik :DD

1984 = (5533)7

Prawda, że to proste?

Może zdążyłeś już zwrócić uwagę na fakt, że reszta z dzielenia nigdy nie będzie większa
niż liczba, przez którą dzielisz. Np. reszta z dzielenia przez 5 wynosi zawsze 0, 1, 2, 3 lub
4. Mówiąc ogólnie: x % n = 0, 1, …, n-1.
Dzięki temu reszty z dzielenia przez podstawę systemu możemy używać jako cyfry w tym
systemie.

Ćwiczenia

Zadanie 46

Zakoduj:
1. liczbę 13 w systemie czwórkowym
2. liczbę 64 w systemie jedenastkowym
3. liczbę 666 w systemie dziewiątkowym
4. liczbę (FF)17 w systemie trójkowym

Kodowanie ułamków

Potrafimy już kodować liczby całkowite. Pora na opanowanie umiejętności kodowania
ułamków.
Algorytm postępowania jest bardzo podobny do zamiany liczb całkowitych. Tym razem
jednak mnożymy liczbę przez podstawę systemu, jako nową liczbę pod spodem
zapisujemy część ułamkową otrzymanego iloczynu (0.cośtam), natomiast część całkowitą
(to, co w wyniku otrzymanym po pomnożeniu stało przed przecinkiem) zapisujemy po
prawej stronie.

6 1. (31)4; 2. (509)11; 3. (820)9; 4. (FF)17 = 270 = (101000)3

Zakodujmy tym razem liczbę 0.0415 w systemie dwudziestkowym!

0.0415 * 20 0
0.83 * 20 G (16)
0.6 * 20 C (12)

0.0

Tabela 8. Kodowanie ułamka w systemie dwudziestkowym.

Uwaga! Podczas kodowania ułamków otrzymane cyfry spisujemy, odwrotnie niż w
przypadku liczb całkowitych, od góry do dołu!

A więc 0.0415 = (0.0GC)20

Tym razem obliczenia zakończyły się otrzymaniem po przecinku wyniku 0 (czyli
otrzymaniem liczby całkowitej). Jednak nie zawsze musi tak być. Okazuje się, że liczba
posiadająca w pewnym systemie skończone rozwinięcie (skończoną ilość cyfr po
przecinku potrzebną do dokładnego zapisania tej liczby) w innym systemie może mieć
rozwinięcie nieskończone. Otrzymywalibyśmy wtedy coraz to inne wyniki mnożenia (a
może te same? wówczas mielibyśmy do czynienia z ułamkiem okresowym) i w końcu
musielibyśmy ograniczyć się do pewnej ustalonej ilości cyfr po przecinku, żeby nie
zaliczyć się na śmierć :)

Czy potrafisz znaleźć przynajmniej ogólny sposób szacowania, czy ułamek będzie miał w
danym systemie skończone rozwinięcie?

Ćwiczenia

Zadanie 57

Zakoduj:
1. liczbę 0.3333 w systemie trójkowym
2. liczbę 0.12 w systemie piątkowym
3. liczbę 0.777 w systemie piętnastkowym
4. liczbę 123.456 w systemie ósemkowym

Przelicz jedną z tych liczb z powrotem na system dziesiętny i sprawdź, jak duża
niedokładność powstała w związku z obcięciem jej zakodowanej postaci do skończonej
ilości cyfr po przecinku.

Algorytm Hornera – dla leniwych

Jeśli wykonałeś zadanie 5 (a na pewno wykonałeś – w końcu jesteś pilnym uczniem,
który chce zostać dobrym koderem :) doszedłeś pewnie do wniosku, że zakodować trzeba
było osobno część całkowitą i część ułamkową liczby z podpunktu 4. Czy nie istnieje
prostszy sposób?

Okazuje się, że tak - nazywa się on algorytmem Hornera. Pozwala on za jednym
zamachem zakodować liczbę rzeczywistą posiadającą zarówno część całkowitą, jak i
ułamkową.
Jest tylko jedno ograniczenie. Trzeba z góry określić ilość cyfr, na jakiej maksymalnie
kodowali będziemy część ułamkową – czyli ilość cyfr po przecinku.

Mało brakowało, a zapomniałbym dodać jedną bardzo ważną, chociaż może oczywistą
rzecz. W każdej liczbie zapisanej w każdym systemie możemy dopisywać dowolną ilość
zer do części całkowitej (przed przecinkiem) po lewej stronie i do części ułamkowej (po

7 1. (0.222222...)3; 2. (0.03)5; 3. (0.B9E959...)15; 4. (173.351361...)8

przecinku) po prawej stronie, co nie zmieni nam wartości tej liczby. Np.:

12.34 = 00012.3400
(2010.012)3 = (002010.012000)3

Zakodujemy teraz liczbę 1984.0415 w systemie siódemkowym. Sposób postępowania
jest następujący:

Przyjmujemy dokładność do 6 cyfr po przecinku. Następnie mnożymy naszą kodowaną
cyfrę przez podstawę systemu podniesioną do potęgi takiej, ile cyfr ustaliliśmy.

1984.0415 * 76 = 1984.0415 * 117 649 = 233 420 498.5

Uff… Tylko spokojnie, nie ma się czego bać. Kalkulator jest po naszej stronie :))

Wyszło coś wielkiego. Co dalej? Najpierw zauważmy, że otrzymana liczba zawiera część
ułamkową. Niby nie ma w tym niczego nadzwyczajnego, ale tkwi w tym fakcie pewien
szczegół. Otóż obecność w tym iloczynie części ułamkowej informuje nas, że danej liczby
nie będzie się dało zakodować z wybraną dokładnością precyzyjnie – zostanie ona obcięta
do wybranej ilości cyfr po przecinku.
Po przyjęciu tej informacji do wiadomości zaokrąglamy wynik do liczby całkowitej, a
następnie kodujemy ją w wybranym systemie tak, jak koduje się zwyczajne liczby
całkowite. Zatem do dzieła!

233 420 499 : 7 4
33 345 785 : 7 4
4 763 683 : 7 1

680 526 : 7 0
97 218 : 7 2
13 888 : 7 0

1984 : 7 3
283 : 7 3
40 : 7 5
5 : 7 5

0

Tabela 9. Kodowanie liczby algorytmem Hornera.

Nie takie to straszne, jak mogłoby się wydawać. Spisujemy teraz cyfry od dołu do góry,
tak jak podczas kodowania liczb całkowitych. Otrzymujemy takie coś: 5533020144.

Na koniec, zgodnie ze wstępnym założeniem, oddzielamy ostatnie 6 cyfr przecinkiem.
Ostateczny wynik wygląda tak:

1984.0415 = (5533.020144)7

Ćwiczenia

Pozostaje nam już tylko przećwiczyć przeliczanie liczb algorytmem Hornera…

Zadanie 68

Zakoduj używając algorytmu Hornera:
1. liczbę 11.2222 w systemie trójkowym
2. liczbę 10.5 w systemie piątkowym
3. liczbę 0.0016 w systemie szesnastkowym
4. liczbę 2048.128 w systemie dziewiątkowym

8 1. (102.0200...)3; 2. (20.2223...)5; 3. (0.0069...)16; 4. (2725.1133...)9

Przelicz jedną z tych liczb z powrotem na system dziesiętny i sprawdź, jak duża
niedokładność powstała w związku z obcięciem jej zakodowanej postaci do skończonej
ilości cyfr po przecinku.

Podsumowanie

W ten oto sposób kończymy podrozdział poświęcony systemom liczbowym i przeliczaniu
liczb. Mam nadzieję, że choć trochę poćwiczyłeś takie przeliczanie, posiadłeś umiejętności
zamiany wszelkich liczb – małych i dużych – między dowolnymi systemami oraz dobrze
się przy tym bawiłeś.
To była taka mała odskocznia od spraw ściśle związanych z komputerem. W następnym
podrozdziale już do nich wrócimy.

Zanim jednak to nastąpi, radzę rozwiązać na koniec kilka zadań, które sprawdzą twoją
wiedzę i umiejętności nabyte podczas lektury tego podrozdziału.

Zadanie 79

1. Wyprowadź tabelkę dwudziestu pierwszych liczb systemu jedenastkowego.
2. Rozkoduj do systemu dziesiętnego liczbę (GG.AG)18.
3. Ile będzie wynosiła reszta z dzielenia 5555 : 66 ?
4. Zakoduj dowolną metodą liczbę 2003.1214 w systemie czwórkowym z

dokładnością do 10 cyfr po przecinku i rozkoduj ją z powrotem na system
dziesiętny. Czy została zachowana dokładność? Po czym to można stwierdzić?

System binarny
Rozpoczynając kolejny podrozdział wracamy do tematu komputerów i programowania.
Jak zapewne wiesz, komputer posługuje się systemem dwójkowym, czyli binarnym.
Do zapisywania wszelkich informacji używa więc tylko dwóch cyfr: 0 i 1.
Poznawszy teorię dowolnych systemów liczbowych, skupimy się teraz na tych naprawdę
ważnych z naszego punktu widzenia.

Zanim jednak to nastąpi, tym razem wyjątkowo – już na wstępie – proponuję
rozwiązanie kilku zadań. Pozwolą nam one trochę „wczuć się w klimat” :)

Zadanie 810

1. Wyprowadź tabelkę kilku pierwszych liczb systemu dwójkowego.
2. Ile będzie wynosiła reszta z dzielenia 25 : 2 ? Jaki jest prosty sposób na

wyznaczanie takiej reszty?
3. Zakoduj liczbę 128 w systemie dwójkowym.
4. Rozkoduj liczbę (010101100.1100)2

Teoria

Na początek, jak zwykle, muszę podać trochę teorii. Na szczęście tym razem nie będzie
wzorów. W zamian proponuję zapoznanie się z definicjami kilku (bardziej lub mniej
związanych z omawianym tematem) pojęć. Chciałbym, żebyś poznał ich znaczenie i
nauczył się je rozróżniać, ponieważ bardzo często są one mylone albo używane
niepoprawnie.

9 1) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 10, 11, 12, 13, 14, 15, 16, 17, 18; 2) 288+16+0.5555...+0.0493 =
304.6048; 3) 11; 4) (133103.0133011001)4; dokładność została zachowana
10 1) 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001 itd.; 2) 25%2=1, Sprawdzamy, czy liczba jest parzysta. 3)
10000000; 4) 172.75, zera na początku i na końcu są dla zmyły :)

Informacja – to konstatacja stanu rzeczy, wiadomość, powiadamianie społeczeństwa w
sposób zobiektywizowany za pomocą środków masowego przekazu albo (co dla nas
najbardziej odpowiednie) obiekt abstrakcyjny, który w postaci zakodowanej może być
przechowywany, przesyłany, przetwarzany i użyty do sterowania.

Dane – to informacje wyrażone w pewnym języku. W informatyce są obiektami, na
których operują programy.

W praktyce informacje można zdefiniować jako dane wraz ze sposobem ich
interpretowania. Pojęcia te dotyczą nie tylko komputerów. Kiedy urzędnik przegląda
tabelki z liczbami mówimy, że przegląda jakieś „dane liczbowe”. Tymczasem dla niego te
liczby niosą pewne „informacje”.
„Dane” jest więc pojęciem ogólniejszym, który obejmuje informacje bez znanego lub
istotnego w danym kontekście znaczenia ich treści. Niniejszy tekst niesie pewne
informacje, ale kiedy nagrasz go na CD-ROM pośród innych plików powiesz, że jest tam
„tyle a tyle megabajtów danych”.

Kodowanie – to zapisywanie informacji w określony sposób.
Szyfrowanie – to kodowanie informacji w taki sposób, aby były nieczytelne dla osób
niepowołanych, a więc utajnione.

Szyfrowanie jest więc tylko specjalnym rodzajem kodowania. Kodowaniem możemy
nazwać każde zapisywanie informacji w jakiejś postaci, choćby tekstu w języku polskim.
Każdy sposób zapisu możemy nazwać kodem. Mieliśmy już do czynienia z kodowaniem
liczb w różnych systemach (czyli inaczej ich zapisywaniem) i bynajmniej nie robiliśmy
tego po to, aby kodowane liczby stały się nieczytelne :)

Szum to sygnał, który nie niesie żadnych informacji.

Krótka podróż w czasie

Przenieśmy się teraz na chwilę do przeszłości celem zrozumienia, dlaczego właśnie taki, a
nie inny system liczbowy jest podstawą całej informatyki.

Dawno, dawno temu odkryto elektryczność i zaczęto budować różne urządzenia. Prąd
płynął sobie w przewodach – raz to mniejszy, innym razem większy – przenosząc sygnały
radiowe, dźwiękowe czy obraz telewizyjny. Takie urządzenia nazywamy analogowymi.

Aż tu nagle stanęło przed maszynami trudne zadanie wykonywania obliczeń. Szybko
okazało się, że w matematyce nie może być (tak jak jest np. w radiu) żadnych szumów
ani trzasków. Liczby są liczbami i muszą pozostać dokładne.

Dlatego ktoś kiedyś wpadł na genialny pomysł, by w każdej chwili w przewodzie mógł być
przenoszony tylko jeden z dwóch możliwych stanów: prąd nie płynie albo płynie pewien z
góry ustalony, nie ma napięcia albo jest pewne określone napięcie, napięcie jest dodatnie
albo ujemne itp. Te dwa stany można reprezentować przez dwie cyfry systemu
binarnego: 0 oraz 1. Tak powstały urządzenia cyfrowe.

Często dopiero zmiana stanu jest informacją. Np. podczas budowy cyfrowego urządzenia
elektronicznego można przyjąć taki kod, że stan identyczny z poprzednim oznacza 0, a
stan odwrotny do poprzedniego oznacza 1.

No dobrze, ale właściwie co takiego genialnego jest w ograniczeniu się tylko do dwóch
stanów i dlaczego wybrano właśnie dwa, a nie np. trzy albo dziesięć? Dzięki temu
osiągnięto m.in. dwie istotne cechy urządzeń cyfrowych:

 Prostota – elementy wykonujące operacje numeryczne na dwóch możliwych

stanach budować jest najprościej.
 Wierność kopii – przesyłanie oraz kopiowanie danych nie powoduje utraty

jakości (w przypadku sygnałów, np. dźwięku) ani dokładności (w przypadku liczb).

System binarny

Jeśli wykonałeś ostatnie zadanie zauważyłeś może, że operowanie na liczbach w systemie
dwójkowym jest dużo prostsze, niż w wypadku innych systemów.
Aby jeszcze lepiej pokazać ten fakt, wykonajmy razem dwa przekształcenia.

Zakodujemy w systemie binarnym liczbę 1984.

1984 : 2 0
992 : 2 0
496 : 2 0
248 : 2 0
124 : 2 0
62 : 2 0
31 : 2 1
15 : 2 1
7 : 2 1
3 : 2 1
1 : 2 1

0

Tabela 10. Kodowanie liczby w systemie binarnym.

A więc 1984 = (11111000000)2.

Jest przy tym trochę więcej pisania, ale za to przy odrobinie wprawy dzielenie dowolnie
dużych liczb przez 2 można wykonywać w pamięci, a o reszcie z tego dzielenia (równej
zawsze 0 albo 1) świadczy parzystość dzielonej liczby.

Teraz rozkodujmy liczbę (1011.0101)2.

23 + 21 + 20 + 2-2 + 2-4 = 8 + 2 + 1 + 0.5 + 0.0625 = 11.5625

Jak widać, nie trzeba pisać przed każdą rozpisywaną cyfrą odpowiednio 0* lub 1*.
Wystarczy tylko spisać te potęgi dwójki, którym odpowiada cyfra 1 i pominąć te, którym
odpowiada cyfra 0.

Zadanie 911

1. Zakoduj liczbę 255 w systemie dwójkowym.
2. Zakoduj liczbę 0.5 w systemie dwójkowym.
3. Rozkoduj liczbę (01010011)2.
4. Rozkoduj liczbę (111100)2.

Czy potrafisz wykonywać większość potrzebnych operacji w pamięci?

Dodawanie i odejmowanie

Czeka nas teraz kolejna powtórka z pierwszych klas szkoły podstawowej. Przypomnimy
sobie bardzo dokładnie, jak wykonywało się dodawanie i odejmowanie „pod kreskę”.

11 1) (11111111)2; 2) (0.1)2; 3) 83; 4) 60

Przypomnienie zrobimy na normalnych liczbach w systemie dziesiętnym, by następnie
nauczyć się tych samych operacji dla liczb binarnych.

Dodawanie i odejmowanie liczb dziesiętnych

Jako pierwsze wykonajmy proste dodawanie dwóch liczb: 163 + 82 = 245.

 1 6 3
+ 8 2
= 2 4 5

Tabela 11. Dodawanie pod kreskę.

Zaczynając od prawej strony dodajemy 3+2=5. Następnie dodajemy 6+8=14. Występuje
tu tzw. przepełnienie. W takiej sytuacji jako wynik danej kolumny zapisujemy ostatnią
cyfrę sumy (czyli 4), a poprzednią przenosimy na kolejną kolumnę na lewo. Stąd 1+1=2.

Teraz zajmiemy się rzeczą trochę trudniejszą – odejmowaniem. Odejmiemy 701326 –
29254 = 672072.

 7 0 1 3 2 6
- 2 9 2 5 4
= 6 7 2 0 7 2

Tabela 12. Odejmowanie pod kreskę.

Znowu zaczynając od prawej strony odejmujemy 6-4=2. Potem próbujemy odjąć 2-5.
Ponieważ nie da się wykonać tego na liczbach dodatnich, dokonujemy tzw. pożyczki –
pożyczamy jednostkę z liczby następnej (3 zamieni się w 2). Ta jednostka po przejściu do
naszej kolumny zamienia się w dziesiątkę (to chyba oczywiste, dlaczego właśnie
dziesiątka? :) i stąd 10+2-5 = 12-5 = 7. Z trójki po pożyczeniu została dwójka, a 2-2=0.

Dalej sytuacja jest jeszcze bardziej skomplikowana. Znowu musimy dokonać pożyczki, bo
nie da się odjąć 1-9. Tym razem jednak nie ma od kogo pożyczyć w następnej kolumnie
– stoi tam 0! Pożyczamy więc od stojącej dwie kolumny dalej siódemki. Pożyczona
jednostka zamienia się w poprzedniej kolumnie (tej nad zerem) w dziesiątkę. Z tej
dziesiątki dalej pożyczamy jednostkę, która zamienia się w kolejną dziesiątkę. Z siódemki
została więc szóstka, zamiast zera jest dziewięć, a my możemy wreszcie policzyć 11-
9=2.
Dalej jest już prosto, o ile pamiętamy, co gdzie zostało. 9-2=7, a 6-0=0.

Mam nadzieję, że przypomniałeś sobie sposób wykonywania dodawania i odejmowania
pod kreskę oraz w pełni rozumiesz, jak to się robi. Szczególnie dużo trudności sprawiają
pożyczki podczas odejmowania, dlatego na to szczególnie uczulam.

Dodawanie i odejmowanie liczb binarnych

Pora przejść na system dwójkowy. Dodawali będziemy zera i jedynki, ale 1+1=2. Jak tą
dwójkę zapisywać? Zapisywać nigdzie jej nie trzeba. Ona będzie występowała tylko w
pożyczkach i przeniesieniach, a jej kodowanie jako 2 lub jako (10)2 to kwestia mało
ważna.

Od tej chwili darujemy sobie czasami zapisywanie liczb w nawiasach i z indeksem
pamiętając, że zajmujemy się systemem dwójkowym.

Dodajmy dwie liczby binarne: 101011 + 01000 = 110011.

 1 0 1 0 1

+ 0 1 0 0
= 1 1 0 0 1

Tabela 13. Dodawanie liczb binarnych.

W zasadzie nie ma tutaj żadnej wielkiej filozofii. 1+0=1, 0+0=0. Dopiero w trzeciej (od
prawej strony) kolumnie występuje przeniesienie: 1+1=2, czyli (10)2. Dlatego w tej
kolumnie zapisujemy 0, a w następnej 1. W końcu 1 + domyślne 0 = 1.

Z odejmowaniem też jest podobnie. Odejmijmy 1001011 – 010110 = 110101.

 1 0 0 1 0 1 1
- 0 1 0 1 1 0
= 1 1 0 1 0 1

Tabela 14. Odejmowanie liczb binarnych.

Po kolei: 1-0=1, 1-1=0. Dalej nie możemy odjąć 0-1, dokonujemy więc pożyczki
sąsiedniej jedynki. Tam zostaje zero, a pożyczona jedynka zamienia się na (no –
zgadnij! :) dwójkę. Stąd 2-1=1. Z jedynki w czwartej kolumnie zostało zero. 0-0=0.

Dalej znowu musimy pożyczyć. Ponieważ obok nie ma nikogo skłonnego do wypożyczenia
potrzebnej nam jedynki, szukamy nieco dalej. Tamta jedynka z ostatniej kolumny
pożycza nam swoją jedyną jedynkę zostawiając sobie zero. Jedynka przechodzi do
kolumny przedostatniej stając się dwójką, z której dalej pożyczamy jedynkę. W kolumnie
przedostatniej zostaje jedynka, a my możemy wreszcie odjąć 2-1=1.

Pamiętając o tym, co zostało w dwóch ostatnich kolumnach, kończymy działanie
wykonując 1-0=1 oraz 0 – domyślne 0 = 0, którego też nie musimy zapisać.

W ten oto sposób opanowaliśmy umiejętność wykonywania podstawowych operacji
arytmetycznych na liczbach dwójkowych, czyli na tych słynnych komputerowych zerach i
jedynkach :)
Teraz, jak się zapewne domyślasz, pora na…

Ćwiczenia

Zadanie 1012

Oblicz:
1. 111 + 111
2. 11001010 + 10101100
3. 111111 – 1101
4. 10000 – 1101

Zamień liczby z jednego z podpunktów na dziesiętne i sprawdź, czy otrzymałeś
prawidłowy wynik.

System ósemkowy i szesnastkowy

W całej swej „fajności” system binarny ma jedną wielką wadę, którą z całą pewnością
zdążyłeś już zauważyć. Mianowicie liczby w tym systemie są po prostu długie. Do
zapisania każdej liczby potrzeba wielu cyfr – dużo więcej, niż w systemach o większej
podstawie.
W sumie nie ma w tym niczego dziwnego – w końcu to jest system o najmniejszej
możliwej podstawie. Czy nie da się jednak czegoś na to poradzić?

12 1) Wskazówka: 3=(11)2, 1110; 2) 101110110; 3) 110010; 4) 11

Rozwiązaniem są dwa inne systemy liczbowe, które również mają duże znaczenie w
informatyce. Są to system ósemkowy oraz przede wszystkim system szesnastkowy.

Dlaczego właśnie one są takie ważne? Nietrudno zauważyć, że 8 i 16 to odpowiednio
trzecia i czwarta potęga dwójki. Co z tego wynika?

Okazuje się, że każdym trzem cyfrom systemu binarnego odpowiada jedna cyfra systemu
ósemkowego, a każdym czterem cyfrom systemu binarnego odpowiada jedna cyfra
systemu szesnastkowego.

System dziesiętny oraz większość pozostałych nie posiada tej cennej właściwości.
Zapewne dlatego, że ich podstawy nie są potęgami dwójki.

Dzięki temu można sporządzić tabelkę wszystkich cyfr danego systemu i ich binarnych
odpowiedników oraz używać jej do prostej zamiany dowolnie długich liczb! Utworzenie
takiej tabelki z pewnością nie sprawiłoby ci problemu. Oto ona:

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Tabela 15. Binarne odpowiedniki cyfr szesnastkowych.

Możemy teraz przeliczyć liczbę 00110101 na system szesnastkowy. W tym celu
grupujemy cyfry po cztery, a następnie korzystając z tabelki zamieniamy je na cyfry
szesnastkowe.

00110101 = 0111 0101 = (75)16

A teraz odwrotnie:

(ABCD)16 = 1010 1011 1100 1101 = 1010101111001101

Bardzo proste! Rodzi się tylko jednak pytanie: czy musisz tą tabelkę znać na pamięć?
W zasadzie wypadałoby znać, ale w rzeczywistości nie trzeba jej wkuwać.

Jeśli pilnie rozwiązywałeś wszystkie powyższe zadania, powinieneś umieć szybko
wyprowadzić sobie każdą potrzebną liczbę licząc po kolei liczby dwójkowe. Spójrz jeszcze
raz na te zera i jedynki w powyższej tabelce i spróbuj zauważyć pewne prawidłowości w
ich rozkładzie. Każdy może znaleźć swój sposób na jej zapamiętanie.

Z czasem nabędziesz wprawy i większość operacji wykonasz zawsze w pamięci. Pomoże
w tym pamiętanie wag kolejnych cyfr w systemie binarnym. Oczywiście – znajomość na
pamięć kolejnych potęg dwójki jest obowiązkowa dla każdego programisty!!!

Oto najważniejsze z nich (tych większych nie musisz wkuwać, ale przynajmniej się z nimi
„opatrz” :)
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 itd.
215 = 32 768 (ok. trzydzieści dwa tysiące)
216 = 65 536 (ok. sześćdziesiąt pięć tysięcy)
231 = 2 147 483 648 (ok. dwa miliardy)
232 = 4 294 967 296 (ok. cztery miliardy)

Ja wcale nie przesadzam. Te potęgi dwójki i system szesnastkowy są naprawdę aż tak
ważne w informatyce i jako programista, nawet używający języków najwyższego
poziomu, musisz sprawnie się nimi posługiwać!

Na zakończenie wspomnę jeszcze o przykładowych zastosowaniach:

 Do zapisywania kolorów w Win32API i DirectX używa się liczb szesnastkowych.
 Do zapisywania adresów komórek pamięci używa się liczb szesnastkowych.
 Do zapisywania atrybutów plików w systemie Linux i na serwerach FTP używa się

liczb ósemkowych.

…oraz wymienię kilka ważnych wartości dla 8-cyfrowych liczb binarnych, a także ich
odpowiedniki dziesiętne i szesnastkowe (także wypadałoby się ich nauczyć :/)

 00000000 = (00)16 = 0
 01000000 = (40)16 = 64
 01111111 = (7F)16 = 127
 10000000 = (80)16 = 128
 11000000 = (C0)16 = 192
 11111111 = (FF)16 = 256

System dwójkowy to, jak już wiesz, inaczej system binarny (w skrócie bin).
System ósemkowy to inaczej system oktalny (w skrócie oct).
Nasz normalny system dziesiętny to inaczej system decymalny (w skrócie dec).
System szesnastkowy to inaczej system heksadecymalny (w skrócie hex).

Zadanie 11

1. Wyprowadź na kartce 16 pierwszych liczb binarnych.
2. Dopisz do nich odpowiadające cyfry szesnastkowe.
3. Postaraj się wypisać z pamięci jak najwięcej kolejnych potęg dwójki.
4. Podziel 256:2, 256:4, 256:8 itp. Wyniki zamień na liczby binarne i szesnastkowe.
5. Zastanów się, jak do zapisywania jakich informacji wystarczy, a dla jakich za mała

jest liczba binarna 8-, 16-, 32-cyfrowa?

Zadanie 1213

Zamień:
1. liczbę (776)8 na system binarny
2. liczbę (B01A)16 na system binarny
3. liczbę 11010010110 na system szesnastkowy
4. liczbę 205 na system binarny, ósemkowy i szesnastkowy

Zastanów się jeszcze raz nad metodami, których użyłeś. Jak wiele operacji udało ci się
przeprowadzić w pamięci? Jak szybko dokonujesz przekształceń? Czego powinieneś
jeszcze się douczyć?

Bonus

Na zakończenie będzie mały bonus. Pokażę teraz jeszcze jeden, być może najprostszy
sposób przeliczania liczb dwójkowych na dziesiętne w obydwie strony.

Każdą liczbę można w dokładnie jeden sposób przedstawić jako kombinację wag cyfr
danego systemu (tutaj – dwójkowego) pomnożonych przez cyfrę (u nas to nie ma
znaczenia – cyfrą jest 0 albo 1).
Przykładowo liczbę 205 z poprzedniego zadania można zamienić w taki sposób:

13 1) 111 111 110; 2) 1011 0000 0001 1010; 3) Wskazówka: liczbę trzeba uzupełnić z lewej strony zerem.
(696)16; 4) 11001101 = (315)8 = (CD)16

 W liczbie 205 liczba 128 (waga ósmej cyfry) mieści się raz. Piszemy wobec tego 1.
205-128=77.

 W liczbie 77 liczba 64 (waga siódmej cyfry) mieści się raz. Piszemy 1. 77-64=13.
 W liczbie 13 liczba 32 (waga kolejnej cyfry) nie mieści się ani razu. Piszemy 0.
 Liczba 16 też się w niej nie mieści – piszemy kolejne 0.
 Liczba 8 mieści się raz – piszemy jedynkę. 13-8=5.
 W liczbie 5 liczba 4 (waga trzeciej cyfry) mieści się raz. Piszemy 1. 5-4=1.
 W liczbie 1 liczba 2 (waga drugiej cyfry) nie mieści się. Piszemy zero.
 Wreszcie zostaje nam jedynka (waga pierwszej cyfry), która mieści się w liczbie 1

dokładnie 1 raz – piszemy kończącą jedynkę.

W ten sposób otrzymujemy: 205 = 11001101.

W drugą stronę też możemy łatwo przeliczać. Warunkiem jest znajomość potęg dwójki.
Widząc liczbę 11010011, sumujemy wagi tych cyfr, przy których stoi jedynka. Zresztą...
chyba była już o tym mowa kilka stron wcześniej :)

1 + 2 + 16 + 64 + 128 = 211

Zadanie 1314

Którą potęgą dwójki jest liczba:
1. 16
2. 64
3. 256
4. 1024

Czy potrafisz podać odpowiedzi od razu?

Jednostki informacji

Komputer przechowuje dane w postaci liczb binarnych. Zachodzi potrzeba mierzenia ilości
tych danych. Powstały w tym celu specjalne jednostki. Zacznijmy ich omawianie od
początku.

Pojedyncza cyfra systemu dwójkowego – mogąca przechowywać informację o jednym z
dwóch możliwych stanów – przyjmująca wartości oznaczane jako 0 albo 1, będąca
najmniejszą i niepodzielną jednostką informacji cyfrowej – to bit.
1 b (mała litera „b”) /bit/

Jeden bit wystarczy do zapisania np. informacji o płci osoby w bazie danych. Przykładowo
0 mogłoby oznaczać kobietę, a 1 mężczyznę (tylko bez obrazy, miłe panie ;) To jednak
stanowczo za mało do zapisywania większości spotykanych informacji.

Bity grupuje się. 8 bitów tworzy bajt. Bajt jest podstawową jednostką informacji
cyfrowej.
 1 B = 8 b (duże „B”) /bajt/

Jak nietrudno obliczyć, jeden bajt może znajdować się w jednym z 28=256 stanów. To
wystarczająco dużo, by zapamiętać np. wiek osoby w bazie danych. Nikt raczej nie
dożywa wieku większego, niż 255 lat :)

To również wystarczająco dużo, by każdemu stanowi (zamiast liczby) przyporządkować
pewien znak. Oprócz dużych i małych liter, cyfr, znaków przestankowych, wszystkich
znaków alfanumerycznych znajdujących się na klawiaturze, kilku znaków sterujących i
innych znalazłoby się jeszcze miejsce dla różnych dziwnych symboli.

14 1) 4; 2) 6; 3) 8; 4) 10

Podobnie jak w wypadku jednostek fizycznych, możemy tworzyć wielokrotności jednostek
informacji.

Małe przypomnienie z fizyki:

podwielokrotność przedrostek symbol wielokrotność przedrostek symbol

10-18 atto a 101 deka da
10-15 femto f 102 hekto h
10-12 piko p 103 kilo k
10-9 nano n 106 mega M
10-6 mikro µ 109 giga G
10-3 mili m 1012 tera T
10-2 centy c 1015 peta P
10-1 decy d 1018 eksa E

Tabela 16. Podwielokrotności i wielokrotności jednostek podstawowych.

Ponieważ bit jest niepodzielny, nie istnieją podwielokrotności jednostek informacji.
Istnieją jednak wielokrotności.

Tkwi tu jednak pewna różnica. Wielokrotności jednostek w fizyce są potęgami dziesiątki
(wybieranymi, dla większych wielokrotności, co 3). Oczywiście ma to związek z podstawą
naszego systemu. Czy w informatyce nie powinniśmy zatem brać potęg dwójki?

Faktycznie, w powszechnym użyciu są wielokrotności jednostek informacji będące
potęgami dwójki. Pewną analogię do wielokrotności jednostek fizycznych pozwala
zachować właściwość mówiąca, że 210 = 1024 ≈ 1000.

 1 kB = 210 B = 1024 B ≈ tysiąc (małe „k”) /kilobajt/
 1 MB = 220 B = 1024 kB = 1048576 B ≈ milion (duże „M”) /megabajt/
 1 GB = 230 B = 1024 MB = 1073741824 B ≈ miliard (duże „G”) /gigabajt/
 1 TB = 240 B = 1024 GB = 1099511627776 B ≈ bilion (duże „T”) /terabajt/
 1 PB = 250 B = 1024 GB = 1125899906842624 B ≈ biliard (duże „P”) /petabajt/
 1 EB = 260 B = 1024 PB = 1152921504606846976 B ≈ trylion (duże „E”)

/eksabajt/

Pojawia się teraz pytanie: „Jak dużo to jest?”. Spróbuję na nie odpowiedzieć podając
typowe rozmiary kilku przykładowych rodzajów danych:

 Tekst – zależnie od długości jeden dokument zajmuje kilkadziesiąt lub kilkaset
kB.

 Grafika – zależnie od wielkości i formatu zapisu jeden obrazek zajmuje
kilkadziesiąt lub kilkaset kB, a nawet ponad 1 MB.

 Muzyka – zależnie od długości jeden utwór zajmuje kilka MB. Jedna minuta
muzyki w formacie MP3 to ok. 1 MB.

 Programy – w zależności od wielkości pełne wersje programów zajmują od kilku
do kilkuset MB.

 Film – w zależności od długości i jakości kodowania jeden film zajmuje od kilkuset
MB do ponad 1 GB.

Podam też pojemności przykładowych nośników danych:

 Dyskietka 3.5” – 1.44 MB
 Pamięć typu flash – zależnie od ceny kilkadziesiąt lub kilkaset MB, a nawet

ponad 1 GB
 CD-ROM – 650 lub 700 MB

 DVD-ROM – w zależności od rodzaju od kilku do kilkunastu GB.
 Dysk twardy – kilkadziesiąt lub ponad 100 GB.
 Wszystkie dane udostępniane w sieci P2P – kilka PB.

Idealiści chcieli wylansować nowe nazwy dla wielokrotności bajta – „kibibajt”, „mebibajt”,
„gibibajt”, „tebibajt” itd. oraz oznaczenia KiB, MiB, GiB itd., natomiast przez kilobajt,
megabajt, gigabajt itd. chcieli oznaczać wielokrotności będące potęgami dziesiątki, nie
dwójki – tak jak jest w fizyce.

Przyzwyczajenia wzięły jednak górę nad teoriami i oprócz nielicznych programów, które
nazywają jednostki informacji w ten oryginalny sposób, wszyscy mówią i piszą o
kilobajtach i megabajtach mając na myśli potęgi dwójki.

Niektórzy oznaczają kilobajty przez duże K. Ma to podkreślać inne znaczenie tej
wielokrotności, niż tradycyjnego „kilo”. Nie ma chyba jednak uzasadnienia dla takiego
wybiórczego odróżniania i dlatego osobiście zalecałbym używanie normalnych kilobajtów
przez małe „k”, a także megabajtów, gigabajtów itd. jako potęg dwójki.

Trzeba pamiętać, że 1024 to nie jest 1000 i nie zawsze można pominąć tą na pozór
niewielką różnicę. Przykładowo uzbierawszy 700000000 B danych chcemy nagrać CD-
ROM. Tymczasem w rzeczywistości jest to tylko 667 MB i zmieszczą się nam na płycie
jeszcze 33 MB!

Dlatego trzeba uważać na tą różnicę i zawsze pamiętać, w jakiej wielokrotności wyrażony
jest rozmiar danych. Jeśli używasz Total Commandera i pokazuje on wielkość plików w
bajtach, zawsze kliknij prawym klawiszem na plik i wybierz Właściwości, aby zobaczyć
jego faktyczny rozmiar w odpowiedniej wielokrotności.

Uważaj też na wielkości podawane przez różnych autorów i producentów, np. rozmiary
plików czy pojemności dysków twardych. Niektórzy cwaniacy podają liczbę miliardów
bajtów, zamiast prawdziwych gigabajtów.

Oprócz rozmiaru danych można jeszcze mierzyć szybkość ich przesyłania (np. przez
Internet). Wielkość taką wyrażamy w kilobajtach lub też w kilobitach na sekundę, co
zapisujemy odpowiednio jako: kBps lub kB/s oraz kbps lub kb/s.

1 kB/s = 8 kbps

Zadanie 14

1. Sprawdź, jak duży jest katalog główny twojego systemu operacyjnego.
2. Sprawdź, jak duże różnice występują w wielkościach katalogów z różnymi

zainstalowanymi programami.
3. Jaki duży jest katalog z twoimi dokumentami?
4. Jak duże są pojedyncze pliki różnego rodzaju w katalogu z twoimi dokumentami?
5. Spróbuj policzyć, ile danych mniej więcej posiadasz zgromadzonych na wszystkich

CD-ROMach? W jakiej wielokrotności wyrazisz tą wielkość?
6. Ile mogłyby zajmować wszystkie napisane przez ciebie programy zebrane w

jednym miejscu?
7. Przemyśl: Czy rozmiar danych zawsze idzie w parze z ich wartością materialną

albo moralną? Jeśli nie, to co o nim decyduje?

Liczby naturalne
Zaczynamy nareszcie omawianie spraw prawdziwie komputerowych. Rozpoczniemy od
dokładnego opisania sposobu, w jaki komputer przechowuje w pamięci najprostsze
możliwe liczby – liczby naturalne.

Liczby naturalne, jak pamiętamy ze szkoły, to liczby całkowite nieujemne, a więc 0, 1, 2,
3, 4, 5, 6, …, 100 itd.

Reprezentacja liczby naturalnej

W sposobie przechowywania liczby naturalnej w pamięci komputera nie ma żadnej
wielkiej filozofii. Przechowywana jest dokładnie tak, jak zapisalibyśmy ją w systemie
dwójkowym. Każdy bit stanowi pojedynczą cyfrę w tym systemie.

Poświęcając na przechowywanie liczby określoną ilość miejsca w pamięci ograniczamy
zakres, jaki może przyjmować ta liczba. Jest to inaczej ilość możliwych kombinacji bitów.
Przykładowo dla 1 bajta (8 bitów) możliwych liczb będzie:

28 = 256

Przyjmując za pierwszą liczbę 0, otrzymujemy zakres od 0 do 255. Zakresem jest więc
zawsze liczba możliwych kombinacji bitów (czyli 2 do potęgi równej liczbie bitów)
pomniejszona o jeden.

Można wyrysować tabelkę z bitami i odpowiadającymi im wagami. Wszystko to wygląda
dokładnie tak samo, jak podczas omawiania zwykłych liczb binarnych.

bit 7 6 5 4 3 2 1 0
waga 128 64 32 16 8 4 2 1

Tabela 17. Budowa liczby naturalnej.

Kolejne bity ponumerowałem (od 0) jedynie dla czytelności. Wagi są, jak widać,
kolejnymi potęgami dwójki.

Przykładowo liczbę 00110001 możemy rozkodować sumując wagi tych bitów, którym
odpowiada jedynka.

32 + 16 + 1 = 49

Aby zakodować liczbę wybieramy te wagi, których suma będzie równa danej liczbie.

55 = 32 + 16 + 4 + 2 + 1 = 00110111

Zadanie 1515

1. Ilu bitów potrzeba do zapisywania liczb z zakresu 0…65535?
2. Rozkoduj jednobajtową liczbę 11111111.
3. Zakoduj liczbę 257 na 10 bitach. Czy ten przykład jest dla ciebie prosty?
4. Ilu bajtów potrzeba do zapisywania liczb z zakresu 239…255?

15 1) 16b; 2) 255; 3) 0100000001; 4) Potrzebujemy 255-239=16 różnych kombinacji; 16=24; potrzeba więc 4b
= 0.5B; nikt nie powiedział, że zakres musi być od zera, ani że nie można mówić o połowie bajta :P

Liczby naturalne w programowaniu

Poznamy teraz praktyczne sposoby implementacji liczb naturalnych w języku C++.

Typy liczb naturalnych

Przyjęto nazwy na kilka typowych rodzajów liczb naturalnych różniących się ilością
wykorzystywanych bajtów (i co za tym idzie – zakresem). Mają one swoje odpowiedniki
pośród typów danych w języku C++. Każdy z nich ma po dwie nazwy – jedną
standardową i drugą (krótszą) zadeklarowaną w plikach nagłówkowych Windows.

Po pierwsze, mamy jeden bajt (ang. byte), czyli 8 bitów. Odpowiada mu typ unsigned
char, albo inaczej BYTE. Jego zakres to 0…255.

Po drugie, może być typ dwubajtowy, czyli 16-bitowy. Dwa bajty nazywane są słowem
(ang. word). Stąd nazwy typów: unsigned short albo WORD. Zakres takiej liczby to
0…65 535 (65 tysięcy).

Dalej mamy liczbę 32-bitową, czyli zajmującą 4 bajty pamięci. Nazywana bywa ona
podwójnym słowem (ang. double word). Odpowiadające typy w języku C++ to unsigned
long oraz DWORD. Zakres wynosi 0…4 294 967 295 (4 miliardy).

Jest też typ, którego rozmiar zależy od tego, czy używany kompilator jest 16-, czy 32-
bitowy. Nazywa się unsigned int albo UINT. W praktyce jednak kompilatory we
współczesnych systemach operacyjnych (w tym Windows i Linux) są 32-bitowe, a więc
UINT jest tak naprawdę tożsamy z DWORD – ich rozmiary w pamięci i zakresy są
jednakowe.

Od czasu do czasu słyszy się głosy, jakoby pojęcie „słowa” (ang. word) oznaczało ten
właśnie rozmiar zależny od platformy. W rzeczywistości jednak określenie to pozostało
synonimem dwóch bajtów (16 bitów).

To jeszcze nie koniec. Dla tych, którym nie wystarcza zakres 4 miliardów, Microsoft
przygotował w swoim kompilatorze dodatkowy typ: unsigned __int64. Jak sama nazwa
wskazuje, liczby tego typu zajmują 64 bity, czyli 8 bajtów. Ich zakres to 0…18 446 744
073 709 551 615 (18 trylionów).

Dodatkowe słowo unsigned przed każdym z typów oznacza „bez znaku” i ma podkreślać,
że chodzi nam o liczby naturalne (zawsze dodatnie). O liczbach ze znakiem (+ lub -),
czyli o liczbach całkowitych, będzie mowa w następnym podrozdziale.

To nie pomyłka, że typ char występuje tu w roli typu liczbowego. Mimo docelowego
przeznaczenia do przechowywania znaków tekstowych jest to właściwy typ liczby 8-
bitowej, jako że C++ nie wprowadza rozróżnienia pomiędzy taką liczbą a znakiem.
Będzie o tym mowa dokładnie w ostatnim podrozdziale.

Zapisywanie wartości liczb naturalnych

Po zdefiniowaniu zmiennej danego typu, wcześniej czy później należałoby przypisać jej
konkretną wartość liczbową. Język C++ pozwala na zapisywanie wartości (są to tzw.
stałe dosłowne) w trzech systemach. Nie ma pośród nich systemu binarnego – liczby w
tym systemie byłyby zbyt długie, a my przecież znamy inne, fajniejsze systemy :)

Można napisać liczbę naturalną ot tak po prostu. Zostanie ona potraktowana dosłownie
jako liczba w systemie dziesiętnym i zadziała dla każdego z wyżej wymienionych typów, o
ile nie przekracza jego zakresu.

BYTE n1 = 255;
WORD n2 = 7;
DWORD n3 = 0;

Jeśli zapisywaną liczbę poprzedzimy zerem, zostanie potraktowana jako liczba w
systemie ósemkowym, np.:

BYTE n1 = 0377;
WORD n2 = 07;
DWORD n3 = 00;

Z kolei aby zapisać liczbę w naszym upragnionym i najpożyteczniejszym systemie
szesnastkowym ;) należy poprzedzić ją znakami 0x (zero i iks). Wtedy już można jej
dalszą część zaczynać od dowolnej liczby zer bez żadnych konsekwencji. Litery A…F
stosowane w roli cyfr mogą być zarówno duże, jak i małe.

BYTE n1 = 0xFF;
WORD n2 = 0x07;
DWORD n3 = 0x0;

Na to poprzedzanie liczby zerem trzeba uważać. Czasami chciałoby się wyrównać liczby
różnej długości do jednej kolumny. Pamiętaj, by zawsze wstawiać w wolnych miejscach
spacje, a nie zera. Inaczej liczba zostanie potraktowana jako zapisana w systemie
ósemkowym i może mieć inną niż oczekiwana wartość!

Można też dodać na końcu liczby dużą literę L, by wymusić typ long oraz u, by podkreślić
brak znaku (czyli że jest to liczba naturalna, a nie ogólnie całkowita). Połączenie tych
dwóch liter – czyli dodanie na końcu liczby uL, wymusza jej potraktowanie jako wartości
typu unsigned long. W praktyce rzadko (jeśli w ogóle) zachodzi potrzeba używania tych
przyrostków.
W przypadku takich przyrostków wyjątkowo nie ma znaczenia wielkość liter.

Działania na liczbach naturalnych

Liczby naturalne można dodawać (+), odejmować (-), mnożyć (*) i dzielić (/). Operator
dzielenia zastosowany na dwóch liczbach naturalnych da wynik również naturalny, a
reszta z dzielenia zostanie obcięta.

Zadanie 1616

Jakie wartości będą miały zmienne po zainicjalizowaniu:

BYTE n1 = 2+2*2;
WORD n2 = 0xff / 0x0F + 2;
DWORD n3 = 10 + 010 + 0x10 + 0x010;
BYTE n4 = (0x0A / 02 + 100) * 03;

Reszta z dzielenia

Skoro dzielenie w zbiorze liczb naturalnych obcina resztę, potrzebne jest działanie
zwracające tą resztę. Działanie takie istnieje i oznacza się je w C++ symbolem procenta:
%. Dzięki swoim ciekawym cechom oraz ogromnemu zastosowaniu w programowaniu
zasługuje na poświęcenie mu osobnego punktu.

16 n1 = 2 + (2*2) = 2+4 = 6; n2 = (FF)16 / (F)16 + 2 = 255 / 15 + 2 = 17 + 2 = 19; n3 = 10 + (10)8 + (10)16
+ (10)16 = 10 + 8 + 16 + 16 = 50; n4 = [(A)16 / (2)8 + 100] * (3)8 = (10 / 2 + 100) * 3 = (5 + 100) * 3 =
105 * 3 = 315 > 255, Błąd: liczba poza zakresem!

Wstępne wiadomości o reszcie z dzielenia były już wprowadzone wcześniej. Teraz
zajmiemy się nim jeszcze bardziej szczegółowo. Możemy nawet sporządzić wykres tej
funkcji:

Rysunek 2. Wykres funkcji naturalnej y = x % 5

Z rysunku można wywnioskować, że funkcja f(x) = x % c jest okresowa o okresie c i
przyjmuje kolejne wartości naturalne z zakresu 0…c-1.

Zliczanie

Można to wykorzystać przy wielu okazjach. Jedną z najczęściej spotykanych jest
wszelkiego rodzaju zliczanie. Wyobraź sobie, że pewien licznik odlicza w górę zwiększając
wartość pewnej zmiennej L o jeden. Jeśli chcesz, by jakaś akcja była wykonywana tylko
co szósty cykl licznika, napisz:

if (L % 6 == 0)
 RobCos();

W taki wypadku pierwsze wywołanie funkcji nastąpi już na samym początku – kiedy
zmienna L jest równa 0. Możesz to zmienić porównując otrzymaną resztę z dzielenia z
wartością większą od zera, np.:

if (L % 6 == 1)
 RobCos();

Wtedy funkcja RobCos() wykona się dla L = 1, 7, 13, 19, 25 itd.

Losowanie liczb naturalnych

Reszta z dzielenia może przydać się także do generowania liczb pseudolosowych. Służąca
do tego funkcja rand() ma taką niemiłą cechę, że zawsze zwraca liczbę naturalną z
zakresu 0…RAND_MAX. Wartość tej stałej wynosi u mnie 0x7fff.
Jak wobec tego wylosować liczbę naturalną z innego zakresu?

Wystarczy w tym celu wykorzystać właściwość operatora % mówiącą o „zawijaniu się” jej
wykresu po osiągnięciu wartości maksymalnej. Możemy skonstruować taką funkcję:

// Losuje liczbę z zakresu 0...max-1
inline UINT my_rand(UINT max)
{
 return rand() % max;
}

Warto zauważyć, że tylko dla stosunkowo małych wartości maksymalnych
prawdopodobieństwo rozkładu wartości losowanych będzie w miarę równomierne.

Tak naprawdę, działanie % nie jest niezbędne. Można je sobie skonstruować za pomocą
wyrażenia: (x - y *(x / y).
/ jest tutaj dzieleniem całkowitym.

Operatory bitowe

Oprócz operacji na pojedynczych wartościach logicznych, działania z algebry Boole’a mają
w języku C++ także inne odpowiedniki. Są nimi operatory bitowe – takie, które wykonują
podaną operację logiczną na wszystkich odpowiadających sobie bitach podanych
wartości.

Najlepiej będzie pokazać to na przykładzie. Pierwszym operatorem bitowym, jaki
poznamy, będzie operator negacji bitowej oznaczany symbolem ~ (tzw. tylda).

~(00100111) = 11011000

 0 0 1 0 0 1 1 1
~ 1 1 0 1 1 0 0 0

Tabela 18. Przykład negacji bitowej.

Jak widać, każdy z bitów został zanegowany.

Operatorami dwuargumentowymi są operator sumy bitowej (alternatywy) oznaczany za
pomocą | (taka pionowa kreska) oraz operator iloczynu bitowego (koniunkcji) oznaczany
jako &. Wykonywane przez nie operacje na poszczególnych bitach są analogiczne, jak w
algebrze Boole’a.

00100111 | 11001010 = 11101111

 0 0 1 0 0 1 1 1
| 1 1 0 0 1 0 1 0
= 1 1 1 0 1 1 1 1

Tabela 19. Przykład sumy bitowej.

00100111 & 11001010 = 00000010

 0 0 1 0 0 1 1 1
& 1 1 0 0 1 0 1 0
= 0 0 0 0 0 0 1 0

Tabela 20. Przykład iloczynu bitowego.

Istnieją jeszcze operatory przesunięcia bitowego. Ich użycie umożliwia przesunięcie całej
wartości o określoną liczbę bitów w lewo lub w prawo. Powstałe po przesunięciu miejsce
jest wypełnione zerami. Bity „wypychane” poza komórkę pamięci są bezpowrotnie
tracone.
Przykład:

00000101 << 4 = 01010000

Operatory przesunięcia bitowego mają ogromne zastosowanie do konstruowania wartości
z kilku elementów, np.:

(1 << 3) | (0 << 2) | (0 << 1) | (1 << 0) = (1 << 3) | 1 = 1000 | 1 = 1001

Nie wolno pomylić operatorów bitowych z odpowiadającymi im operatorami logicznymi.
Trzeba uważać na tą różnicę tym bardziej, że są one podobne w zapisie i łatwo tutaj o
pomyłkę. Tymczasem wartości takich wyrażeń będą zupełnie różne od oczekiwanych.

„Lub”: | - bitowe, || - logiczne
„I”: & - bitowe, && - logiczne

|| i && operują na całych liczbach, a | i & na pojedynczych bitach.

Zadanie 1717

Oblicz i podaj wynik w systemie binarnym, dziesiętnym oraz szesnastkowym:
1. 0x0f | 99
2. (05 << 4) / 4
3. 010 & 0x10 & 10
4. ((0x0f << 3) | (0xf0 >> 4) – 100) * (257 & 24)

Xor

Pozostał nam do omówienia jeszcze jeden operator bitowy – operator różnicy
symetrycznej zwany też „xor” (ang. exclusive or – wyłącznie lub). Jego wynikiem jest w
danym bicie jedynka wtedy i tylko wtedy, kiedy dokładnie jeden z porównywanych bitów
jest 1 – nie żaden ani nie obydwa.

Oznacza się go w C++ symbolem ^ (ptaszek). Należy zapamiętać, że ten znak to właśnie
xor, a nie, jak to się czasami oznacza, podnoszenie liczby do potęgi. W C++ nie ma
operatora potęgowania.

Co takiego daje nam ten operator? Nie byłoby w nim niczego użytecznego, gdyby nie
niezwykłe właściwości działania, które on wykonuje. Oprócz tego, że (podobnie jak
wszystkie pozostałe operatory bitowe) jest ono przemienne, dla każdych x i y zachodzi
także:

x ^ y ^ y = x

Innymi słowy, po dwukrotnym „przexorowaniu” liczby przez tą samą wartość
otrzymujemy daną liczbę wyjściową.

Szyfrowanie

Można pokusić się o napisanie na tej podstawie prostego algorytmu szyfrującego. Zasada
jego działania będzie następująca:

 J a k i e ś _ c o ś
^ N i c N i c N i c N
= X X X X X X X X X X

Tabela 21. Szyfrowanie za pomocą xor.

Każdą komórką tabeli jest tym razem znak, a więc cały bajt. Wykonując xor każdego
znaku przez hasło otrzymujemy pewien szyfrogram, czyli znaki oznaczone tutaj przez
XXXXXXXXXX.

„Jakieś_coś” ^ „Nic” = XXXXXXXXXX

17 1) 1111 | 1100011 = 1101111 = (111)10 = 0x6F; 2) (101 << 4) / 4 = 1010000 / 4 = 80 / 4 = 20 = 0x14 =
10100; 3) 1000 & 10000 & 1010 = 0; 4) ((1111 << 3) | (11110000 >> 4) – 100) * (100000001 & 11000) =
(1111000 | 1111 – 100) * 0 = 0

Hasło zostaje „zawinięte”, czyli powtórzone wiele razy. Takie powtórzenie można
zaimplementować (jak mam nadzieję już się domyślasz) za pomocą operatora reszty z
dzielenia. Oto funkcja:

std::string SzyfrowanieXor(std::string a_Text, std::string a_Haslo)
{
 std::string Wynik;
 for (size_t i = 0; i < a_Text.size(); i++)
 Wynik += a_Text[i] ^ a_Haslo[i % a_Haslo.size()];
 return Wynik;
}

Najciekawsze w tym wszystkim jest to, że ta sama funkcja służy do szyfrowania i
deszyfrowania tekstu (lub, odpowiednio, zaszyfrowanego tekstu) przez podane hasło.
Wynika to oczywiście z własności, którą zaprezentowałem na początku.

 X X X X X X X X X X
^ N i c N i c N i c N
= J a k i e ś _ c o ś

Tabela 22. Deszyfrowanie za pomocą xor.

XXXXXXXXXX ^ „Nic” = „Jakieś_coś”

Suma kontrolna

Drugim ciekawym zastosowaniem różnicy symetrycznej jest obliczanie sum kontrolnych,
czyli wartości skojarzonych z pewnymi danymi i pozwalających zweryfikować ich
poprawność.

Na przykład jeśli piszesz program do kompresji, możesz w swoim formacie pliku
przewidzieć miejsce na sumę kontrolną obliczoną z kompresowanych danych. Podczas
dekompresji obliczysz sumę jeszcze raz i jeśli nie zgodzi się z tą zapisaną, to znaczy że
dane zostały uszkodzone. Należy wtedy wyświetlić błąd.

Aby obliczyć jednobajtową sumę kontrolną, wystarczy „przexorować” wszystkie bajty
danych. Oto przykładowa funkcja:

BYTE SumaKontrolna(void* a_Dane, size_t a_Rozmiar)
{
 BYTE Suma = 0;
 for (size_t i = 0; i < a_Rozmiar; i++)
 Suma = Suma ^ static_cast<BYTE*>(a_Dane)[i];
 return Suma;
}

Przedstawione metody szyfrowania i obliczania sumy kontrolnej nie są najlepsze czy
najbezpieczniejsze. W powszechnym użyciu są dużo lepsze, ale i bardziej skomplikowane.
Wszystko zależy od tego, do jakiego zastosowania potrzebujesz danego algorytmu oraz
czy masz ochotę na napisanie go samemu :)
Te przykłady miały tylko pokazać zastosowanie operatora ^.

Flagi bitowe

Mimo małych możliwości, czasami potrzebne jest przechowywanie danych na jednym
bicie – czyli wartości logicznej typu prawda/fałsz. Do operowania na pojedynczej wartości
tego rodzaju doskonale nadaje się typ logiczny.

Gorzej, kiedy zachodzi potrzeba utworzenia, przesłania czy wykorzystania całego zestawu
takich flag bitowych. Operowanie na osobnych zmiennych typu bool nie byłoby ani
wygodne, ani oszczędne. Dlatego do takich zastosowań wykorzystuje się pojedyncze bity
liczb naturalnych.
Nauczmy się operacji na takich flagach bitowych!

Zanim jednak przejdziemy do omawiania tematu, pokażę popularny przykład użycia
takich flag. Mają one zastosowanie chociażby w jednym z parametrów znanej wszystkim
funkcji MessageBox():

MessageBox(0, "Hello world!", "App", MB_OK | MB_ICONEXCLAMATION);

Jako ostatniego parametru powyższa funkcja oczekuje zestawu informacji różnego
rodzaju, m.in. jakie chcemy mieć przyciski i jaką ikonkę w tworzonym okienku z
komunikatem. Chociaż niektóre możliwości wykluczają się (trzeba podać tylko jedną z
nich), to wszystko są wartości logiczne w rodzaju tak/nie.

Zastanówmy się, jak takie flagi skonstruować. Z powyższego przykładu widać już, że ich
użycie polega na połączeniu wybranych flag operatorem bitowym „lub”. Można się
domyślać, że każda z takich flag to stała o nazwie rozpoczynającej się od tego samego
przedrostka i o takiej wartości, w której jedynką jest tylko jeden bit – w każdej z nich
inny.

Możemy już spróbować zadeklarować sobie jakieś przykładowe flagi:

const DWORD BLE_FLAGA1 = 0x00000001uL;
const DWORD BLE_FLAGA2 = 0x00000002uL;
const DWORD BLE_FLAGA3 = 0x00000004uL;
const DWORD BLE_FLAGA4 = 0x00000008uL;
const DWORD BLE_FLAGA5 = 0x00000010uL;

Wartości trzeba tak dobrać, aby po przeliczeniu na system binarny odpowiadały
jedynkom w kolejnych bitach liczby (czyli kolejne potęgi dwójki).

Przypisanie wartości:

DWORD dwWartosc = BLE_FLAGA1 | BLE_FLAGA4;

…zainicjalizuje zmienną dwWartosc wartością:

0001 | 1000 = 1001 = 9

Jednak nie wartość liczbowa jest tutaj istotna, ale właśnie kombinacja pojedynczych
bitów. Dzięki takiemu podejściu możesz „upychać” wiele informacji typu logicznego (do
32) w pojedynczej 32-bitowej liczbie naturalnej.

Teraz trzeba jakoś odczytywać tak upakowane bity. Posłużymy się w tym celu drugim
operatorem bitowym – „i”. Filtrując za jego pomocą kombinację flag bitowych przez
pojedynczą flagę otrzymujemy, zależnie od wartości sprawdzanego bitu w tej wartości –
tą flagę lub 0.

if ((dwWartosc & BLE_FLAGA4) == BLE_FLAGA4)
 std::cout << "Flaga 4 jest ustawiona." << std::endl;
else
 std::cout << "Flaga 4 nie jest ustawiona." << std::endl;

Jak widać, nie jest to trudne. Ma za to ogromne zastosowanie w programowaniu i jest
wykorzystywane w różnych API. Dlatego trzeba temat flag bitowych dobrze zrozumieć i
nauczyć się ich używać.

Liczby całkowite
Nauczyliśmy się wszystkiego o programowaniu liczb naturalnych. Pora rozszerzyć zakres
naszego zainteresowania. Zajmiemy się teraz liczbami całkowitymi, które, jak pamiętamy
ze szkoły, mogą być ujemne albo dodatnie, np.: -1000, -21, -5, 0, 3, 10, 25 itp.

Wypadałoby zacząć od opisania sposobu, w jaki komputer przechowuje tego rodzaju
liczby w pamięci. Zastanówmy się, jak mógłby on to robić…

Bit znaku

Pierwsze, co przychodzi do głowy, to zarezerwowanie jednego spośród bitów liczby na
przechowywanie informacji o znaku.

bit 7 6 5 4 3 2 1 0
waga znak 64 32 16 8 4 2 1

Tabela 23. Budowa liczby całkowitej z bitem znaku.

Przykładowo można się umówić, że wartość siódmego bitu 0 oznacza znak „+”, a 1
oznacza znak „-”. Moglibyśmy wtedy zapisywać liczby w taki sposób:

01010011 = 83
11001101 = -77

Niestety, w przedstawiony sposób nie koduje się liczb całkowitych. Rozwiązanie to jest
złe, ponieważ:

00000000 = 0
10000000 = -0

Jak widać, dwie możliwe kombinacje bitów odpowiadają tej samej wartości liczbowej. Jest
to ogromna wada z dwóch zasadniczych powodów:

1. Jeden z możliwych stanów marnowałby się.
2. Zachodziłaby konieczność uwzględniania tej niejednoznacznej wartości w

obliczeniach.

Dlatego prawdziwy sposób reprezentacji liczb całkowitych w pamięci komputera jest inny.
Jego nazwa to:

Kod uzupełnień

Właściwie, jego pełna nazwa to „kod uzupełnień do dwóch”, a jego oznaczeniem jest
„U2”. Kod ten opiera się na bardzo ciekawym pomyśle. Przyjrzyj się wagom, jakie
przypisuje się poszczególnym bitom liczby całkowitej w tym kodzie:

bit 7 6 5 4 3 2 1 0
waga -128 64 32 16 8 4 2 1

Tabela 24. Budowa liczby całkowitej w kodzie uzupełnień U2.

Jak widać, waga ostatniego bitu jest ujemna. Aby w pełni rozgryźć istotę sprawy musimy
przypomnieć sobie, że liczby w kodzie opisanym takimi wagami liczyło się sumując wagi
bitów, którym odpowiadała binarna jedynka. Popatrzmy na przykłady:

(00000000)U2 = 0
(01010101)U2 = 64 + 16 + 4 + 1 = 85
(11110000)U2 = -128 + 64 + 32 + 16 = -16
(11000011)U2 = -128 + 64 + 2 + 1 = -61

W taki sposób da się zakodować każdą liczbę z dopuszczalnego zakresu. Ano właśnie…
Jaki jest zakres liczb w kodzie U2?
Aby odpowiedzieć na to pytanie, spróbujmy znaleźć najmniejszą i największą liczbę, jaką
da się zakodować w ten sposób. Będą to odpowiednio:

(10000000)U2 = -128
(01111111)U2 = 127

Tak więc dopuszczalny zakres to –128…127.

Odwrotny kod uzupełnień

Można też wymyślić sobie kod uzupełnień o wszystkich wagach ujemnych, a ostatniej
dodatniej.

bit 7 6 5 4 3 2 1 0
waga 128 -64 -32 -16 -8 -4 -2 -1

Tabela 25. Inny kod uzupełnień.

Jak można zauważyć, jego zakresem będzie –127…128. Liczby zapisane w takim kodzie
uzupełnień są oczywiście niekompatybilne z liczbami zapisanymi w tym pierwszym.

Prawdziwym kodem U2 – tym stosowanym w komputerze – jest ten pierwszy, w którym
wszystkie wagi są dodatnie, ostatnia jest ujemna, a zakres jest na minusie o jeden
większy niż na plusie.

Zadanie 1818

Zaprojektuj kod uzupełnień o podanym zakresie. Ile bitów potrzeba? Narysuj do każdego
tabelkę z wagami.

1. –16…15
2. –15…16
3. –1024…1023

Kodowanie liczb w U2

Aby zapisać liczbę w kodzie uzupełnień wpisujemy jedynki w bitach o takich wagach, aby
ich suma była równa danej liczbie. Przypomnijmy tabelkę z kodem, którego będziemy
używali:

bit 7 6 5 4 3 2 1 0
waga -128 64 32 16 8 4 2 1

Tabela 26. Kod U2, którego używamy.

18 1) 5b, -16,8,4,2,1; 2) 5b, 16,-8,-4,-2,-1; 3) 11b, -1024,512,256,128,64,32,16,8,4,2,1

Przykłady kodowania liczb:

33 = 32 + 1 = (00100001)U2

115 = 64 + 32 + 16 + 2 + 1 = (01110011)U2

Liczby ujemne zapisuje się analogicznie. Trzeba tylko ustawić ostatni bit na 1 (aby w
ogóle otrzymać liczbę ujemną) a następnie wybierać takie bity dodatnie, które zwiększą
nam wartość do pożądanej.

-44 = -128 + 64 + 16 + 4 = (11010100)U2

-2 = -128 + 64 + 32 + 16 + 8 + 4 + 2 = (11111110)U2

Teraz twoja kolej :)

Zadanie 1919

Zapisz w powyższym kodzie U2 liczby:
1. 120
2. –120
3. –1
4. 64

Dodawanie i odejmowanie w U2

Tutaj będzie niespodzianka. Okazuje się, że mimo swojej nieco dziwnej budowy liczby w
kodzie uzupełnień dodaje się i odejmuje dokładnie tak samo, jak zwykłe liczby binarne!
Trzeba przy tym jednak ignorować wszelkie pożyczki oraz przepełnienia poza zakres.

Rozpatrzmy przykłady:

 0 1 0 0 1 0 1 0
+ 1 1 1 1 1 0 1 1
= 0 1 0 0 0 1 0 1

Tabela 27. Dodawanie liczb w kodzie U2.

Łatwo zauważyć, że nastąpiło tutaj przepełnienie. Jak się jednak okazuje, mimo tego
otrzymany wynik jest poprawny!

74 + (-5) = 74 – 5 = 69

Teraz zobaczmy, jak wygląda odejmowanie:

 0 1 0 0 1 0 1 0
- 1 1 1 1 1 0 1 1
= 0 1 0 0 1 1 1 1

Tabela 28. Odejmowanie w kodzie U2.

Trzeba było dokonać pożyczki od nieistniejącej jedynki. Mimo tego udało się poprawnie
obliczyć:

74 – (-5) = 75 + 5 = 79

Jasne jest, że nie zawsze wynik będzie poprawny. Obliczana liczba może się znaleźć poza
zakresem i wtedy otrzymamy błędny wynik.

19 1. (01111000)U2; 2. (10001000)U2; 3. (11111111)U2; 4. (01000000)U2

Zadanie 2020

Oblicz za pomocą kodu uzupełnień:
1. 2 + 2
2. –6 + (-6)
3. 127 + (-127)
4. 10 – 20

Odwracanie liczby

Oprócz dodawania i odejmowania, z liczbą całkowitą można zrobić jeszcze jedną rzecz –
można ją odwrócić. Odwrócenie to inaczej zmiana znaku. Liczbą odwrotną do 6 jest liczba
–6, a liczbą odwrotną do –6 jest liczba 6. Odwracanie nazywamy zanegowaniem.

Aby odwrócić liczbę zapisaną w kodzie U2, trzeba wykonać dwie czynności:

1. Zanegować wszystkie bity liczby (negacja bitowa).
2. Do wyniku dodać 1 (normalne dodawanie pod kreskę).

Oto przykład odwracania liczby -78:

 1 0 1 1 0 0 1 0
~ 0 1 0 0 1 1 0 1

Tabela 29. Odwracanie liczby - etap 1 z 2 (odwracanie bitów)

 0 1 0 0 1 1 0 1

+ 0 0 0 0 0 0 0 1
= 0 1 0 0 1 1 1 0

Tabela 30. Odwracanie liczby - etap 2 z 2 (dodawanie jedynki)

Jak łatwo policzyć, wyszło 78.

Ta możliwość odwracania to dobra wiadomość. Jeśli nie radzisz sobie z kodowaniem liczb
ujemnych poprzez gromadzenie potrzebnych wag, możesz normalnie zakodować liczbę
dodatnią, a następnie ją odwrócić!

Liczby całkowite w programowaniu

Nadeszła pora na poznanie praktycznej implementacji liczb całkowitych w języku C++.
Oto przegląd dostępnych typów danych:

 Typ jednobajtowy (8-bitowy) to signed char, albo po prostu char. Jego zakres to
–128…127.

 Typ dwubajtowy (16-bitowy) to short. Jego zakres to –32 768…32 767 (±32
tysiące).

 Typ czterobajtowy (32-bitowy) nazywa się long. Jego zakresem są liczby –
2 147 483 648…2 147 483 647 (±2 miliardy).

 Dodatkowym ośmiobajtowym (64-bitowym) typem jest __int64 o zakresie -
9 223 372 036 854 775 808…9 223 372 036 854 775 807 (±9 trylionów).

20 1. (00000010)U2+(00000010)U2=(00000100))U2; 2. (11111010)U2+(11111010)U2=(11110100)U2; 3.
(01111111)U2+(10000001)U2=(00000000)U2; 4. (00001010)U2-(00010100)U2=(11110110)U2

 Typem o długości zależnej od używanego kompilatora jest typ int. W praktyce w
systemach Windows i Linux jest on równoważny typowi 32-bitowemu. To właśnie
tego typu używa się najczęściej jako zwyczajnego typu dla liczb całkowitych.

W rzeczywistości możliwych nazw typów jest dużo więcej. Po słowie short i long można
postawić int, a przez analogię to typu __int64 pozostałe mają także nazwy: __int8,
__int16 i __int32. Analogicznie do typów naturalnych, przed każdym z przedstawionych
można też postawić słowo signed.

Pozostał do omówienia już tylko sposób zapisywania liczb całkowitych. Jednakże
praktycznie nie ma tu czego opisywać. Liczbę można poprzedzić znakiem + lub -. Znak +
znaczy tyle samo, co gdyby go tam w ogóle nie było – sygnalizuje, że liczba jest
dodatnia.

Liczby rzeczywiste
Wiemy już bardzo dużo o tym, jak komputer radzi sobie z dodatnimi i ujemnymi liczbami
całkowitymi. Jednak to nie wystarczy. W obliczeniach zachodzi czasami potrzeba
posłużenia się liczbami posiadającymi część ułamkową. Takie liczby nazywamy liczbami
rzeczywistymi.

Mówiąc ściślej, liczby rzeczywiste to wszystkie liczby położone na osi liczbowej. Także te,
których nie umiemy dokładnie zapisać, np. ludolfina (znana jako π), liczba Nepera (znana
jako e) czy pierwiastek z dwóch (takie liczby nazywamy niewymiernymi).

Jak można przypuszczać, komputer nie posługuje się zawsze precyzyjnymi liczbami
wykonując operacje na nich tak jak uczeń na matematyce, np.:

3
13

3
10

3
1310

+=
+ ππ

Niektóre zaawansowane programy matematyczne to potrafią. Jednak normalnie
komputer posługuje się konkretnymi wartościami liczbowymi i na nich wykonuje
obliczenia tak, jak my robimy to na lekcjach fizyki. Z konieczności liczby te mają
dokładność ograniczoną do pewnej ilości miejsc po przecinku. Liczby niewymierne (jak
wspomniana π czy e) są reprezentowane przez wartości przybliżone, np.:

8.8
3

26.4
3

134.13
3

1314.310
3

1310
==

+
=

+⋅
=

+π

Kod stałoprzecinkowy

Zastanówmy się, w jaki sposób komputer mógłby przechowywać w pamięci liczby
rzeczywiste. Aby znaleźć odpowiedź na to pytanie przyjrzyjmy się bliżej metodzie, jakiej
my używamy na co dzień.

Zapisując liczbę rzeczywistą, piszemy np. tak:

1984.0415

Kilka cyfr tworzy normalną część całkowitą liczby, dalej występuje przecinek (albo – jak
to jest w programowaniu – kropka) i wreszcie kolejne cyfry, które tworzą część
ułamkową. Cała liczba zapisana jest w naszym normalnym systemie dziesiętnym.

Gdyby tak zapisywać liczby w taki sam sposób, ale w systemie binarnym, można byłoby
bezpośrednio przechowywać je w pamięci komputera! Po prostu – pewna ilość bitów
uznawana byłaby za cyfry dwójkowe przed przecinkiem, a pozostałe bity za cyfry po
przecinku.

Taki kod – z umieszczonym na stałe przecinkiem – to kod stałoprzecinkowy albo
stałopozycyjny.

Dla przykładu rozważmy liczbę zapisaną w kodzie 16-bitowym. Darujemy sobie dokładne
rozpisanie sposobu jej rozkodowania, bo nie jest to tutaj najważniejsze.

(11111111.11111111) = 255 + 255/256 = 255.99609375

Musisz wiedzieć, że w taki sposób nie koduje się w komputerze liczb rzeczywistych. Kod
stałoprzecinkowy ma wiele wad:

 mały zakres liczb możliwych do zakodowania
 mała dokładność (precyzja) części ułamkowej
 trudny do oszacowania błąd obliczeń

Mała powtórka z fizyki

Skoro taki sposób jest nienajlepszy – to jak wygląda ten lepszy? Niestety sprawa, do
której zmierzamy, jest dość skomplikowana. Do jej zrozumienia potrzebna będzie cała
wiedza opisana powyżej (w tym kodowanie liczb naturalnych i kodowanie liczb
całkowitych w kodzie uzupełnień). Zanim przejdziemy do sedna sprawy, musimy też po
raz kolejny zrobić małą powtórkę ze szkolnej wiedzy.

Przypomnijmy sobie, w jaki sposób zapisuje się liczby na przedmiocie najbliższym
naszym aktualnym rozważaniom – czyli na fizyce. Liczby mogą być dokładne, np. 100 m.
Mogą być też przybliżone do kilku miejsc po przecinku, np. 0.3333 A.

Często zdarza się, że liczba jest bardzo duża albo bardzo mała. Stosuje się w takim
wypadku odpowiednie przedrostki wielokrotności, które powtórzyliśmy już sobie
niedawno. Przykłady: 22 µF, 3 km.

Do obliczeń trzeba jednak sprowadzić wielkości do jednostek podstawowych. Można
wtedy napisać tak: 0.000022 F, 3000 m, ale do wyrażania liczb bardzo dużych i bardzo
małych używa się na lekcjach fizyki takiego zapisu:

22*10-6 F, 3*103 m

Przeanalizujmy to dokładnie. Liczba zapisana w taki sposób składa się z dwóch części.
Pierwszą jest „liczba właściwa”, a drugą liczba 10 podniesione do jakiejś potęgi.
Nietrudno zauważyć, że potęga –6 odpowiada przedrostkowi mikro (µ), a potęga 3
odpowiada przedrostkowi kilo (k). Dziesiątka to, jak można się domyślić, po prostu
podstawa naszego systemu.

Tak naprawdę, liczba przed znakiem mnożenia to kodowana liczba po tzw. normalizacji.
Np.:

123000000 = 1.23*108

Umawiamy się, że znormalizowana liczba musi mieć jedną cyfrę przed przecinkiem i
pozostałe po przecinku. W tym celu przesuwamy przecinek o odpowiednią liczbę

miejsc w prawo albo w lewo. Ta liczba miejsc, o jakie przesunęliśmy przecinek, to jest
właśnie wykładnik potęgi.
W przypadku przesuwania przecinka w lewo potęga jest (jak widać) dodatnia, a w
wypadku przesuwania przecinka w prawo byłaby ujemna.

Na zakończenie tej powtórki zobaczmy jeszcze, jak można rozkodować tak zapisaną
liczbę. Jako przykład weźmy: 4.79*10-5.

Można ją zwyczajnie wyliczyć:

4.79*10-5 = 4.79*1/105 = 4.79*0.00001 = 0.0000479

ale można też po prostu przesunąć przecinek o 5 pozycji w lewo:

000004.79 > 00000.479 > 0000.0479 > 000.00479 > 00.000479 > 0.0000479

Kod zmiennoprzecinkowy FP2

Zostawmy już ten niekoderski system dziesiątkowy i wróćmy do naszego ulubionego
zapisu binarnego :) Można wyobrazić sobie przeniesienie wszystkiego, co zostało
napisane wyżej, bezpośrednio z systemu dziesiętnego na binarny. Jedyną różnicą będzie
liczba 2 zamiast 10 jako podstawa potęgi.

No to teraz, niestety, zobaczymy kolejny przerażający wzór :O

cs NmL ⋅⋅−=)1(

N to podstawa systemu liczbowego.
s to bit znaku.

 0 oznacza znak +, bo (-1)0 = 1
 1 oznacza znak -, bo (-1)1 = -1

c (cecha) to wykładnik potęgi, czyli informacja, o ile miejsc przesuwamy przecinek. Może
być dodatnia albo ujemna. Jest zapisana w kodzie uzupełnień U2.
m (mantysa) to znormalizowana liczba, zapisana jako binarna liczba naturalna.

Taki kod z cechą i mantysą, to kod zmiennoprzecinkowy albo zmiennopozycyjny
(jego oznaczeniem jest FP2 – od ang. floating point). Jego nazwa wzięła się stąd, że
cecha może przesuwać przecinek mantysy. Pozwala to na zapisywanie bardzo dużych i
bardzo małych liczb.
To właśnie w taki sposób komputer koduje liczby rzeczywiste!

Oprócz dwóch nowopoznanych słówek – „mantysa” i „cecha” – pokazany wzór razem z
objaśnieniem powinien nam pomóc w zakodowaniu i rozkodowaniu przykładowej liczby.
Do liczby zapisanej w kodzie FP2 zawsze trzeba podać, ile bitów zajętych jest przez
mantysę, a ile przez cechę. Oto budowa przykładowego kodu FP2:

 znak cecha mantysa
bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

waga s -16 8 4 2 1 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10

Tabela 31. Budowa przykładowego kodu FP2.

Sprawa wydaje się bardzo trudna i taka jest w istocie. Ale nie trzeba się bać na zapas.
Spróbujemy teraz powoli zakodować, a potem rozkodować liczbę w przedstawionym
systemie, a wszystko stanie się jasne :)

Kodowanie

Chcemy zapisać liczbę 1984.0415 w kodzie FP2 o budowie przedstawionej w powyższej
tabelce. W tym celu wykonujemy kolejne kroki:

Po pierwsze, ustalamy znak. Liczba jest dodatnia, a więc:

s = 0

Gdyby była ujemna, wartością bitu byłoby 1, a dalej rozpatrywalibyśmy już liczbę
przeciwną – czyli pozbawioną tego minusa (dodatnią).

Teraz musimy zapisać tą liczbę w normalnym systemie binarnym. Posłużymy się
poznanym wcześniej algorytmem Hornera. Jako docelową liczbę bitów przyjmujemy 11 –
o jeden więcej, niż może przechować mantysa (zaraz się okaże, dlaczego właśnie tak).

1984.0415 * 211 = 4 063 316.992 ≈ 4 063 317

4 063 317 : 2 1
2 031 658 : 2 0
1 015 829 : 2 1

507 914 : 2 0
253 957 : 2 1
126 978 : 2 0
63 489 : 2 1
31 744 : 2 0
15 872 : 2 0
7 936 : 2 0
3 968 : 2 0
1 984 : 2 0

992 : 2 0
496 : 2 0
248 : 2 0
124 : 2 0
62 : 2 0
31 : 2 1
15 : 2 1
7 : 2 1
3 : 2 1
1 : 2 1

0

Tabela 32. Kodowanie liczby algorytmem Hornera.

A więc mamy:

1984.0415 = 11111000000.00001010101

OK, liczba została przeliczona. Teraz możemy zająć się właściwym kodowaniem w FP2.
Dokonujemy normalizacji – czyli przesuwamy przecinek tak, aby przed przecinkiem
znajdowała się tylko jedna niezerowa cyfra.

Wychodzi coś takiego:

1.111100000000001010101

Zauważ, że jedyną możliwą niezerową cyfrą w systemie dwójkowym jest 1. Skoro przed
przecinkiem zawsze stoi pojedyncza jedynka, możemy zapamiętać, że ona tam jest i
oszczędzić jednego bitu nie zapisując jej. Dlatego ją pogrubiłem.

Można też spotkać taki kod, w którym wszystkie znaki znajdują się za przecinkiem – tzn.
przecinek przesuwany jest tak, aby bezpośrednio za nim znalazła się pierwsza jedynka.
Kolejne wagi mantysy miałyby wtedy postać 2-2, 2-3, 2-4 itd.
O ile się nie mylę, komputer w rzeczywistości używa jednak tego kodu z jedynką przed
przecinkiem.

Ostatecznie mantysę utworzą kolejne cyfry spisane od przecinka dotąd, dokąd zmieszczą
się w przyjętej długości mantysy (u nas 10 bitów). Gdybyśmy mięli mniej cyfr, niż jest
potrzebne, mantysę uzupełnia się zerami z prawej strony.

m = 1111000000

Teraz zajmiemy się cechą. Pamiętamy, że przecinek przesunęliśmy o 10 miejsc w lewo.
Jako cechę trzeba więc będzie zapisać liczbę 10 w kodzie U2, którego budowę można
wyczytać z tabelki z budową kodu zmiennoprzecinkowego, w jakim kodujemy.

Trzeba odróżnić ujemną wartość cechy od ujemnej wartości mantysy. Tutaj obydwie te
liczby są dodatnie, ale równie dobrze mogłyby być ujemne. Ujemna mantysa oznacza, że
kodowana liczba jest ujemna. Ujemna cecha oznacza, że podczas normalizowania
przesuwamy przecinek w prawo.

Ostatecznie cecha wygląda tak:

c = (01010)U2

Jak widać, mantysę zapisuje się w postaci liczby naturalnej i osobnego bitu znaku, a
cechę za pomocą kodu uzupełnień U2. Co więcej, na schemacie budowy kodu FP2 widać,
że znak mantysy jest od samej mantysy oddzielony cechą.

Mamy już wszystkie części liczby. Możemy ją zapisać w pełnej okazałości:

1984.0415 = (0 01010 1111000000)FP2

Wiem, wiem, to nie było proste :) Warto wrócić w tej chwili to teorii i do tego
przerażającego wzoru (może wyda się teraz już odrobinę mniej straszny?), a potem
jeszcze raz dokładnie przeanalizować powyższy sposób kodowania liczby.

Dekodowanie

Rozkodujemy teraz tą liczbę z powrotem. Posłuży do tego przedstawiony niedawno wzór.
Rozpatrując kolejne elementy, otrzymujemy:

s = 0, a więc mamy: (-1)0

m = 1111000000, a więc mamy: 2-1 + 2-2 + 2-3 + 2-4

c = (01010)U2 = 10, a więc mamy 210

Składając to razem zgodnie z wzorem, otrzymujemy do policzenia takie coś:

(-1)0 * (20 + 2-1 + 2-2 + 2-3 + 2-4) * 210 =

Pogrubiony składnik odpowiada jedynce przed przecinkiem, którą zapamiętaliśmy i nie
zapisaliśmy w zakodowanej liczbie, oszczędzając jeden bit. Nie wolno o niej zapomnieć
podczas rozkodowania liczby.
Uważaj na opuszczenie tego składnika – to bardzo częsty błąd!!!

Kiedy to policzymy, wyjdzie nam od razu rozkodowana liczba. A więc do dzieła!

(-1)0 = 1, a więc ten element możemy pominąć.

Można byłoby teraz żmudnie podnosić te dwójki do tych ujemnych potęg, ale jest lepsze
wyjście. Możemy do każdego z wykładników potęg w nawiasie dodać wykładnik tej potęgi
za nawiasem. Ostatecznie można liczyć dalej tak:

210 + 29 + 28 + 27 + 26 = 1024 + 512 + 256 + 128 + 64 = 1984

Wyszło mniej więcej tyle, ile powinno było wyjść. Ale chyba czegoś tu brakuje :)
Czyżbyśmy o czymś zapomnieli? Może nie zrobiliśmy czegoś ważnego i dlatego obcięło
nam część ułamkową liczby?

Otóż nie! Wszystko jest OK. Po prostu zakodowanie liczby w takim a nie innym systemie
FP2, za pomocą określonej ilości bitów przeznaczonych na cechę i na mantysę
spowodowało ograniczenie dokładności do iluś miejsc po przecinku (tym już
przesuniętym). Stąd utrata dalszej części liczby.

Po głębszym zastanowieniu można wywnioskować, że precyzja liczby zależy od ilości
znaków przeznaczonych na mantysę, a zakres liczby od ilości znaków przeznaczonych na
cechę.

Wartości specjalne

Standard kodu FP2 przewiduje dodatkowo wartości specjalne:

1. Maksymalna wartość cechy przy zerowej wartości mantysy daje w zależności od
bitu znaku mantysy wartość zwaną –INF lub +INF (oznaczającą odpowiednio -∞ i
+∞).

2. Maksymalna wartość cechy przy jakiejkolwiek niezerowej wartości mantysy to
tzw. NaN (ang. Not a Number), czyli wartość, która nie jest poprawną liczbą.

Ćwiczenia

Całe to kodowanie liczb rzeczywistych wygląda na bardzo trudne i niewdzięczne.
Zapewniam cię jednak, że przy odpowiednim podejściu może być naprawdę doskonałą
zabawą!
Osobiście lubię czasem zakodować sobie jakąś liczbę w jakimś wymyślonym kodzie FP2,
potem ją rozkodować i zobaczyć, co z niej zostało :D

Zadanie 2121

1. Rozkoduj liczbę (1 11111 1111111111)FP2.
2. Zakoduj liczbę 9999 w kodzie FP2.
3. Zakoduj liczbę w –0.2 w kodzie FP2 w 3 bitach cechy i 4 bitach mantysy.
4. Zakoduj w kodzie FP2 liczbę 0.333333…, potem ją rozkoduj i na podstawie wyniku

oszacuj dokładność używanego w tym dokumencie 16-bitowego formatu.

21 1. –(1+2+4+8+16+32+64+128+256+512+1024)/2048 = -2036/2048 = -0.9941…; 2. (0 01101
0011100001)FP2; 3. (1 101 1001)FP2; 4. (0 11110 0101010101)FP2 ⇒ (1+4+16+64+256+1024)/4096 =
1365/4069 = 0.33325…; dokładność wynosi w tym przypadku ok. 3 cyfr dziesiętnych po przecinku.

Liczby rzeczywiste w programowaniu

Tradycyjnie już, poznawszy szczegóły przechowywania danych na poziomie pojedynczych
bitów, przechodzimy do omawiania rzeczy praktycznych.

Typy zmiennoprzecinkowe

Najpierw poznamy typy danych, które pozwalają programować operacje na liczbach
zmiennoprzecinkowych.

Pierwszym z typów zmiennoprzecinkowych w C++ jest typ float. Zajmuje 32 bity (4
bajty), z których na cechę przeznaczonych jest 8, a na mantysę 23. Jego zakres wynosi -
1.175494351*10-38…3.402823466*1038, a jego dokładność to 6…7 znaczących cyfr.
Nazywany bywa typem zmiennoprzecinkowym o pojedynczej precyzji. To właśnie on jest
używany najczęściej – jego precyzja wystarcza do zdecydowanej większości zastosowań.

Kolejnym typem jest double. Zmienne tego typu zajmują 64 bity (8 bajtów). Cecha
zajmuje 11 bitów, a mantysa 52. Jego zakres wynosi 2.2250738585072014*10-

308…1.7976931348623158*10308, jego dokładność to 15…16 cyfr. Nazywany bywa (jak
sama jego angielska nazwa wskazuje :) typem o podwójnej precyzji.

Wprowadzone przeze mnie w tym tekście pojęcia liczb naturalnych, całkowitych czy
rzeczywistych są zaczerpnięte z matematyki. W praktyce do nazywania typów danych
programista posługuje się nazwami: liczby całkowite bez znaku, liczby całkowite ze
znakiem (x-bitowe) oraz liczby zmiennoprzecinkowe (pojedynczej lub podwójnej
precyzji).

Zapisywanie wartości zmiennoprzecinkowych

Domyślnie całkowita wartość liczbowa traktowana jest jako wartość jednego z typów
całkowitych. W praktyce często kompilator „domyśla się”, że chodzi o typ
zmiennoprzecinkowy i nie zgłasza ostrzeżenia. Zawsze warto jednak podkreślić typ.

Aby pokazać wszelkie możliwe sposoby zapisu liczb zmiennoprzecinkowych, najlepiej
będzie rozpatrzyć przykładowy kod:

float a = 2; // 1
float b = 2.; // 2
float c = 2.0; // 3
float x = 2.0f; // 4
float y = -10.5; // 5
float z = -5.2e-3; // 6

1. Tutaj podana zostaje wartość całkowita, która przy mniejszym lub większym

proteście kompilatora zostanie automatycznie potraktowana jako
zmiennoprzecinkowa.

2. Można zapisać kropkę nie wpisując po niej kolejnych cyfr. Przyznasz chyba
jednak, że nienajlepiej to wygląda? :)

3. Liczbę można wpisać normalnie jako część przed przecinkiem, kropkę (która, jak
pamiętamy, w programowaniu robi za przecinek :) oraz cyfry po przecinku.

4. Wartość zawierająca przecinek domyślnie traktowana jest jako stała dosłowna
typu double. Aby wymusić potraktowanie jej jako wartość typu float, należy
postawić na jej końcu literkę f.

5. Tutaj nie ma niczego nowego. Chciałem tylko pokazać przez to, że liczba może
być ujemna, a po przecinku mogą znajdować się cyfry inne niż zero (co, mam
nadzieję, wydaje się oczywiste :)

6. To jest alternatywny sposób zapisu liczb zmiennoprzecinkowych – wygodny, jeśli
chodzi o liczby bardzo duże oraz bardzo małe. Nazywa się to notacja naukowa
(ang. scientific notation) i polega na tym, że piszemy mantysę, dalej literkę e oraz
cechę.

Pozostańmy jeszcze przez chwilę przy ostatnim przykładzie. Litera e nie ma niczego
wspólnego ze stałą równa 2.72… To tylko takie oznaczenie (które pochodzi od ang.
exponent, czyli wykładnik), a cały ten zapis znaczy tyle co:

-5.2 * 10-3 = -0.0052

Wartość zapisana w notacji naukowej domyślnie jest typu double i podczas pokazanego
wyżej przypisania kompilator zgłosi ostrzeżenie. Nic nie stoi jednak na przeszkodzie, żeby
na końcu tak zapisanej wartości także postawić magiczną literkę f :)

Ogólnie warto, abyś wypracował sobie (z uwzględnieniem natury używanego przez ciebie
kompilatora i jego ostrzeżeń) standard dotyczący zaznaczania lub nie zaznaczania typu
przy stałych dosłownych za pomocą przyrostków u, L czy f. Ja osobiście stosuję tylko f.

Operatory zmiennoprzecinkowe

Liczby rzeczywiste, podobnie jak całkowite, można dodawać, odejmować, mnożyć i
dzielić. Nie wymaga to chyba dłuższego komentarza… A może jednak? :) Okazuje się, że
jest o czym pisać.

Po pierwsze: do liczb rzeczywistych nie da się stosować operatora reszty z dzielenia %.

P drugie, operator dzielenia / wykonuje dzielenie rzeczywiste wtedy, kiedy przynajmniej
jeden z jego argumentów jest rzeczywisty. Jego rezultatem jest wtedy także liczba
rzeczywista. W przeciwnym wypadku dokonuje dzielenia całkowitego z obcięciem reszty i
jego wynik jest także całkowity.

float a = 10 / 3;
float b = 10.0f / 3;
float c = 10.0f / 3.0f;

W przedstawionym przykładzie zmienna b i c będzie przechowywała wartość 3.3333…,
natomiast wartością zmiennej a będzie liczba 3. W jej przypadku nastąpiło dzielenie
całkowite oraz konwersja zwróconej wartości całkowitej na liczbę zmiennoprzecinkową.

Jak widać, należy zawsze bardzo uważać na typ argumentów biorących udział w
dzieleniu. Przy okazji uczulam też na możliwość wystąpienia błędu dzielenia przez 0.
Przed nią także trzeba się zabezpieczać.

Funkcje matematyczne

Skoro już jesteśmy przy liczbach rzeczywistych, pozwolę sobie opisać kilka funkcji
matematycznych. Być może nie wszystkie są ci znane i nie wszystkich będziesz często
używał. Zapewniam jednak, że większość z nich wypada znać i jest naprawdę użyteczna
w programowaniu.

Do potęgowania nie ma w języku C++ (podobnie jak w większości języków
programowania) operatora takiego, jak do dodawania czy mnożenia. Podnoszenie do
kwadratu można sobie łatwo zrobić pisząc (x*x). Analogicznie sześcian (trzecia potęga)
to będzie: (x*x*x). Do podnoszenia liczby do dowolnej potęgi rzeczywistej służy funkcja
pow(x, y).

Pierwiastek kwadratowy oblicza funkcja sqrt(x). Dowolny inny można sobie zrobić
pisząc pow(x, 1.0/y).

Wartość bezwzględną (moduł) z liczby x oblicza funkcja fabs(x). Istnieje też jej
odpowiednik do liczb całkowitych: abs(n).

Nie wszystkie funkcje trygonometryczne reprezentowane są w C++ przez funkcje o
takich samych nazwach, jak nazwy tych funkcji w matematyce. Sinus oblicza funkcja
sin(x), a cosinus: cos(x). Tangens, który oznacza się przez tg, obliczany jest przez
funkcję tan(x). Cotangensa w ogóle nie ma, ale znając podstawowe wzory
trygonometryczne można go łatwo wyliczyć w taki sposób: (1.0/tan(x)). Trzeba tylko
uważać, żeby nie wykonać dzielenia przez 0.

Funkcje cyklometryczne wyglądają w C++ podobnie do trygonometrycznych. Są to
odpowiednio funkcje: asin(x), acos(x) i atan(x). Arcus cotangensa znowuż nie ma, ale
można go wyliczyć za pomocą wyrażenia: (M_PI/2.0-atan(x)).

Jeszcze jedną grupą podobnych funkcji są funkcje hiperboliczne. Odpowiadają im w
C++ odpowiednio: sinh(x), cosh(x) i tanh(x). Cotangensa hiperbolicznego nie ma, a
wyliczyć go można ze wzoru: ((exp(x)+exp(-x))/(exp(x)-exp(-x))).

Do obliczania logarytmów służy kilka funkcji różniących się podstawą. log10(x) oblicza
logarytm dziesiętny (o podstawie 10), a log(x) oblicza logarytm naturalny (o podstawie
e).

Warto jeszcze wspomnieć o funkcji exp(x) podnoszącej stałą e do podanej potęgi (jest to
funkcja tzw. eksponencjalna). Oczywiście różnych funkcji matematycznych jest dużo
więcej. Po szczegóły odsyłam do opisu bibliotek cmath oraz math.h w dokumentacji.

Wszystkie opisane tu funkcje pochodzą z biblioteki math.h. Musisz ją włączyć do modułu,
w którym używasz tych funkcji.

Przedstawione funkcje operują na liczbach typu double. Każda ma jednak swój
odpowiednik dla typu float, którego nazwa kończy się na „f”, np.: sinf(x), log10f(x).

Stałe liczbowe

Od czasu do czasu zachodzi potrzeba użycia w pisanym programie jednej z „magicznych”
liczb, jak liczba π czy e. Można je sobie zdefiniować samemu, ale okazuje się, że są one
wpisane także do standardowych nagłówków.

Biblioteka math.h zawiera wiele użytecznych stałych, w tym stałe o nazwach M_PI i M_E.

Jeśli używasz DirectX i włączasz do kodu nagłówek rozszerzenia D3DX, masz też do
dyspozycji stałą typu float o nazwie D3DX_PI.

Losowanie liczb

Podobnie jak przy okazji omawiania liczb naturalnych, także teraz zastanowimy się nad
otrzymywaniem liczb pseudolosowych za pomocą niezbyt wygodnej funkcji rand(). Moje
rozwiązanie wygląda tak:

inline float myrandf()
{
 return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
}

Przedstawiona funkcja zwraca losową liczbę z zakresu 0.0…1.0 włącznie dzieląc
otrzymaną liczbę całkowitą przez jej maksymalny zakres.

Konwersja z liczbami całkowitymi

Czasami trzeba zamienić liczbę rzeczywistą na całkowitą lub odwrotnie. Oczywiście
podczas konwersji z liczby zmiennoprzecinkowej na całkowitą reszta zostaje obcięta.

Kompilator potrafi przeprowadzić taką konwersję automatycznie.

float f = 10.5f;
int i = f;
f = i;

Wyświetla jednak przy tym ostrzeżenia, że może zostać utracona dokładność. Żeby
oszczędzić sobie czytania, lepiej stosować operatory rzutowania, np.:

float f = 10.5f;
int i = static_cast<int>(f);
f = static_cast<float>(i);

Znaki
Rozpoczynamy ostatni podrozdział. Zajmiemy się w nim sposobem, w jaki komputer
przechowuje w pamięci tekst.

Chociaż komputery zostały stworzone do liczenia, od zawsze posługiwały się tekstem. Nie
chodzi tylko o możliwość pisania na komputerze wypracowań i referatów :) Jeszcze zanim
pojawiły się pierwsze systemy okienkowe, ludzie wydawali komputerom polecenia za
pomocą konsoli – czyli tekstowego wiersza poleceń.

Na rozgrzewkę proponuje wykonanie następującego ciekawego zadanka:

Zadanie 2222

1. Przyjrzyj się uważnie klawiaturze i popatrz na znaki, które możesz za jej pomocą
wprowadzać. Jakich symboli brakuje, a przydałyby się? Które znaki są
niepotrzebne i rzadko ich używasz?

2. Zdobądź i obejrzyj tablicę znaków ASCII. Które z tych znaków rozpoznajesz jako
możliwe do wpisania z klawiatury? Które ci się podobają? Które uważasz za
bezużyteczne?

3. Zaprojektuj własną tablicę znaków składającą się z 64 pozycji (tablica 8x8). Które
znaki wybierzesz uważając je za najistotniejsze i dlaczego? Ilu bitów potrzeba do
zapisania jednego takiego znaku?

ASCII

Aby zakodować tekst, trzeba każdej możliwej kombinacji bitów przyporządkować pewien
znak. Najpopularniejszym standardem kodowania znaków jest kod ASCII. Jeden znak w

22 1) Jakiej dziedziny dotyczą znaki, które chętnie byś dodał? Czy są to symbole matematyczne? A może jakieś
inne? Jak można sobie bez nich poradzić? 2) Tablicę znaków ASCII łatwo znajdziesz w Internecie, choćby pod
adresem http://www.asciitable.com/. Często była też publikowana na końcu starszych książek o
programowaniu, np. o Turbo Pascalu. 3) Zapewne znalazłoby się w niej miejsce dla dużych liter alfabetu,
polskich liter, cyfr, spacji (odstępu), podstawowych znaków przestankowych i kilku innych symboli. Potrzeba
6b.

http://www.asciitable.com/

tym kodzie zajmuje 1 bajt (8 bitów). Standard ten obowiązuje już od czasów systemu
DOS aż po dziś dzień.

Tak naprawdę, sam standard ASCII wykorzystuje 7 bitów. Oznacza to, że dostępnych
jest 128 różnych kombinacji bitów, czyli można zapisać 128 różnych znaków. Czy to
dużo, czy mało? To zależy do czego… Taka ilość spokojnie wystarczyła, by pierwszym 32
znakom (odpowiadającym zakodowanym w systemie binarnym liczbom naturalnym
0…31) przypisać pewne specjalne kody sterujące, a dalej zmieścić cyfry, małe i duże
litery alfabetu łacińskiego oraz wszystkie znaki znajdujące się na klawiaturze.

Na przykład:

 32 = 0x20 = 040 oznacza spację
 43 = 0x2B = 053 oznacza znak „+”
 57 = 0x39 = 071 oznacza cyfrę „9”
 97 = 0x61 = 0141 oznacza literę „a”

Pośród znaków ASCII wydzieloną grupę stanowią tzw. białe znaki (ang. whitespace) albo
inaczej odstępy. Są one uznawane za znaki oddzielające pewne części tekstu. Należą do
nich 4 znaki: spacja (kod 32), tabulacja (kod 9), koniec wiersza (kod 10) oraz powrót
karetki (kod 13).

W wielu językach (w tym w językach programowania, np. C++ czy Pascal oraz w
językach opisu, np. HTML czy XML) fakt, jakie spośród tych znaków wystąpią, w jakiej
ilości i w jakiej kolejności, nie ma znaczenia – każda taka sekwencja traktowana jest jako
pojedynczy odstęp. To dzięki temu możemy robić wcięcia w kodzie i swobodnie go
rozmieszczać (zauważ, że wcięcie to znak końca wiersza plus pewna liczba spacji lub
tabulacji).

Znaki końca wiersza

Poświęcenia dodatkowej uwagi wymaga temat znaków uznawanych za koniec wiersza
(linii) w tekście. Panują w tej kwestii dwa różne standardy. W Windows koniec wiersza
zaznacza się sekwencją dwóch znaków CR (kod 13) i LF (kod 10). W Linux natomiast
samym znakiem LF (kod 10).

Z kompatybilnością między tymi formatami bywa różnie. W Linux podwójny koniec
wiersza najczęściej zinterpretowany zostanie prawidłowo, o ile wiersz może kończyć się
odstępem i ten odstęp zostanie zignorowany.

Notatnik Windows nie odczyta poprawnie dokumentu zapisanego ze znakami końca
wiersza w stylu linuxowym. Na prawidłowe jego wyświetlenie możesz za to liczyć w
programie Lister wbudowanym w Total Commander.

Aby edytować i zapisywać pod Windows dokumenty ze znakami końca wiersza w stylu
linuxowym, możesz użyć jednego z tekstowych edytorów HTML, np. HomeSite lub
Pajączek. Trzeba tylko uaktywnić specjalną opcję w konfiguracji. Nazywa się ona
najczęściej zapisywaniem znaków końca wiersza w stylu Unix.

Extended ASCII

256 możliwych kombinacji bitów w jednym bajcie to jednak za mało, by zapisać znaki
specyficzne dla różnych języków świata, jak polskie „ąćęłńóśżź” czy niemieckie „umlauty”
(nie mówiąc już o zupełnie innych alfabetach, jak cyrylica czy znaki chińskie).

Dlatego dodatkowe 128 znaków powstałe po użyciu ósmego bitu nie jest ujednolicone.
Stworzonych zostało wiele tzw. stron kodowych (ang. codepage) używających tych

dodatkowych znaków do kodowania liter alfabetów narodowych, a przy tym różnych
symboli graficznych i innych bardziej lub mniej przydatnych.

Jest z tym niestety dużo problemów. Nawet dla samego języka polskiego powstało kilka
kodów. Obecnie używane są dwa:

1. ISO-8859-2 (Latin-2)
2. Windows-1250

Ten drugi jest przez wielu potępiany za to, że został wylansowany przez Microsoft. W
praktyce jednak to właśnie jego używa system Windows, a wielu miejscach Internetu jest
on nie mniej popularny, niż ten pierwszy.

W wielu zastosowaniach, szczególnie w Internecie (WWW, e-mail) w nagłówku
zapisywana jest nazwa standardu kodowania użytego w danym dokumencie. Pozwala to
zminimalizować problemy wynikające z całego tego bałaganu.

Aby sprawdzić, czy prawidłowo działają w jakimś programie, systemie czy gdziekolwiek
indziej polskie litery, wpisuje się zazwyczaj utarty tekst: „Zażółć gęślą jaźń”. Choć nie
ma on większego sensu, ma to do siebie, że będąc poprawnym gramatycznie zdaniem
zawiera w sobie wszystkie polskie literki.

Unikod

Rozwój Internetu stworzył konieczność wynalezienia lepszego sposobu kodowania
znaków, niż wysłużony już kod ASCII. Nawet ze swoimi stronami kodowymi ten ostatni
ma wiele ograniczeń i sprawia wiele problemów. Nie można chociażby zapisać tekstu w
kilku różnych językach w jednym dokumencie.

Pomyślano więc tak: Właściwie, skoro dzisiejsze dyski mają pojemności mierzone w
gigabajtach, a obrazki i filmy zajmują o całe rzędy wielkości więcej miejsca niż tekst, po
co nadal ograniczać się do jednego bajta na znak? Dlaczego nie utworzyć kodu, w którym
jeden znak zajmowałby, powiedzmy, 2 bajty?

Tak powstał Unikod (ang. Unicode, w skrócie UCS). Warto zdać sobie sprawę z faktu, że
już za pomocą 2 bajtów można zakodować 216 = 65536 różnych znaków! Dlatego w
unikodzie znalazło się miejsce dla wszelkich użytecznych i używanych na świecie liter,
symboli i znaków, a po upowszechnieniu się tego standardu nasze dzieci będą już tylko
od nas słyszały historie, jakie to kiedyś były problemy w komputerze z kodowaniem
znaków :)

Najpopularniejszymi odmianami unikodu są UTF-8 i UTF-16. W tej pierwszej znak może
mieć różną długość. Pierwsze 128 znaków pokrywa się z tablicą ASCII i jest zapisywana
za pomocą jednego bajta, natomiast znaki dodatkowe (np. polskie literki) są zapisywane
za pomocą specjalnych kilkubajtowych sekwencji. Z kolei UTF-16 określa standard, w
którym każdy znak zajmuje 2 bajty.

Nie będziemy się tutaj dokładnie zajmowali unikodem. Może w następnym wydaniu tego
tekstu… Tymczasem musisz wiedzieć, że już dziś wiele programów i systemów
operacyjnych używa go jako standardowego sposobu kodowania znaków, a
programowania z użyciem unikodu warto się nauczyć.

Po szczegóły odsyłam do samego źródła – na stronę http://www.unicode.org/.

http://www.unicode.org/

Znaki w programowaniu

Już po raz ostatni wracamy do kodu, by krótko omówić sposób obchodzenia się ze
znakami w języku C++ w świetle przedstawionych wyżej faktów. Zaczniemy, jak zwykle,
od opisania typów danych.

Pomijając kwestię unikodu typ jest właściwie jeden. Nazywa się on char. Można też
używać zdefiniowanej w nagłówkach Windows nazwy CHAR. Zmienne tego typu
reprezentują pojedynczy znak w kodzie ASCII i zajmują 1 bajt (8 bitów).

Pojedyncze znaki zapisuje się w C++ w apostrofach, np.:

char c = 'Ą';

Łańcuch znaków (ang. string) – inaczej po prostu tekst – reprezentuje w programowaniu
tablica znaków lub wskaźnik do takiej tablicy. Łańcuchy zapisuje się w cudzysłowach.
Przyjęło się, że automatycznie (w sposób niewidoczny dla programisty) koniec łańcucha
oznaczany jest znakiem o kodzie 0.

char str1[] = "Zażółć gęślą jaźń";
char* str2 = str1;
std::cout << str2 << std::endl;

Wykonanie powyższego kodu pokazuje nam, że konsola Windows używa innej strony
kodowej (takiej pokutującej jeszcze z czasów DOS), niż normalne okienka (Windows-
1250).

Ponieważ deklarowanie dostatecznie dużych tablic i dbanie o ich długość nie należy do
zajęć przyjemnych, a dynamiczna alokacja pamięci i żonglowanie wskaźnikami do
bezpiecznych, twórcy języków programowania starają się zapewniać możliwość
wygodniejszego operowania na łańcuchach. W C++ w skład biblioteki standardowej STL
wchodzi zdefiniowany w nagłówku string typ std::string. Używa się go całkiem
wygodnie, np.:

std::string str = "Błąd: Nie wykryto klawiatury!\n";
str += "Naciśnij [ESC], aby wyjść.";
MessageBox (0, str.c_str(), "Błąd", MB_OK | MB_ICONERROR);

Jak widać, łańcuchy można swobodnie przypisywać i można do nich dopisywać kolejne
części. Obiekt str sam zajmuje się długością tekstu i jego przechowywaniem w pamięci.

Jego funkcja c_str() zwraca wskaźnik użyteczny wszędzie tam, gdzie funkcje (np. te z
Win32API) oczekują łańcucha typu char*. Jest on na tyle inteligentny, że nie musisz
zajmować się jego zwalnianiem.

Niektórzy twierdzą, że używanie takich automatycznych narzędzi spowalnia działanie
programu i dlatego jest niedobre. Moim zdaniem nawet jeśli istnieje przez to jakaś utrata
szybkości, chcąc pisać duże, poważne aplikacje trzeba zapomnieć o zajmowaniu się
szczegółami tak elementarnych rzeczy jak operacje na łańcuchach.

Przy okazji widać tutaj także użycie jednego ze znaków specjalnych. Znaki takie
wprowadza się w C++ w postaci ukośnika \ oraz odpowiedniej sekwencji (najczęściej
jednego znaku). Oto ich lista:

 \b – cofacz (ang. backspace)
 \f – nowa strona (ang. form feed)
 \n – nowa linia (ang. new line)

 \r – powrót karetki (ang. carriage return)
 \t – tabulator poziomy (ang. tabulator)
 \v – tabulator pionowy (ang. vertical tabulator)
 \a – sygnał dźwiękowy (ang. alarm)
 \\ - ukośnik (ang. backslash)
 \’ – apostrof
 \” – cudzysłów
 \0 – znak o kodzie 0 (NULL)
 \? – pytajnik
 \### – znak ASCII o kodzie podanym w miejscu „###” w systemie ósemkowym
 \x## - znak ASCII o kodzie podanym w miejscu „##” w systemie szesnastkowym

Znaki a liczby

Jeśli czytałeś uważnie pamiętasz zapewne, że char to typ znakowy i jednocześnie typ
reprezentujący 8-bitową liczbę całkowitą. Jakie są tego konsekwencje? Można się
domyślać, że zapisany w apostrofach znak to nic innego, jak liczba odpowiadająca jego
kodowi.

Aby lepiej zilustrować ten fakt, popatrz na kod zamieniający cyfrę zapisaną jako znak
ASCII na odpowiadającą jej wartość liczbową:

char Cyfra = '7';
int Liczba = Cyfra - '0';
std::cout << "Liczba wynosi: " << Liczba << std::endl;

W rozwiązaniu tym wykorzystałem fakt, że cyfry umieszczone są w tablicy ASCII kolejno
od 0 do 9. Jednakże cyfrze 0 wcale nie odpowiada kod 0, tylko jakiś tam inny… Dlatego
od kodu cyfry zapisanej w zmiennej odjąłem kod cyfry 0 i tak otrzymałem szukaną
wartość liczbową.
Mam nadzieję, że rozumiesz, skąd to się wzięło?

Mały bonus

Na zakończenie tego ostatniego podrozdziału będzie mały bonus. Oto krótka, 3-linijkowa
funkcja w C++:

f(){int k;float i,j,r,x,y=-16;while(puts(""),y++<15)for(x
=0;x++<79;putchar(" .:-;!/>)|&IH%*#"[k&15]))for(i=k=r=0;
j=r*r-i*i-2+x/25,i=2*r*i+y/10,j*j+i*i<11&&k++<111;r=j);}

Pochodzi ona ze wstępu do książki pt. Perełki programowania gier, tom 3. Skopiuj ją do
programu, włącz nagłówek stdio.h i zobacz, jaki będzie efekt :)

Podsumowanie
Tak oto dobiegła końca nasza podróż przez bity i bajty. Poznaliśmy sposób, w jaki
komputer reprezentuje dane na najniższym poziomie, gromadzi je, zapisuje w pamięci,
przesyła oraz przetwarza. To jest właśnie istota informatyki!

Wiem, że ręczne przeliczanie liczb na system siódemkowy i wiele innych rzeczy nie będzie
potrzebne w praktyce programistycznej. Myślę jednak, że dla prawdziwego pasjonata
programowania takie wiadomości wydają się po prostu ciekawe. Pamiętaj: brak
konieczności zajmowania się pewnymi sprawami niskiego poziomu nie zwalnia od ich
znajomości i rozumienia!

	REPREZENTACJA DANYCH W PAMIĘCI

