
Sortowanie przez scalanie (merge sort)

Sortowanie przez scalanie należy do algorytmów, które wykorzystują metodę "dziel i zwyciężaj".

Odkrycie algorytmu przypisuje się Johnowi von Neumannowi.
Złożoność algorytmu wynosi n⋅log n, a więc jest on znacznie wydajniejszy niż sortowanie

bąbelkowe, przez wstawianie czy przez selekcję, gdzie złożoność jest kwadratowa. Żeby
zrozumieć zasadę działania przyjrzyjmy się najpierw dwóm posortowanym tablicom:

tablica 1: 2 3 7 9 10

tablica 2: 1 3 4 8 11

Zauważmy, że możemy liniowo scalić te dwa ciągi liczb i uzyskać jedną posortowaną tablicę

postępując ze schematem:

 ustawiamy liczniki na początki tablic posortowanych,
 następnie porównujemy elementy i mniejszy lub równy element wskakuje jako pierwszy w

scalonej tablicy,
 zwiększamy licznik w tej tablicy, z której "zabraliśmy element",
 czynność powtarzamy aż do wyczerpania danych z obu tablic.

Ideą działania algorytmu jest dzielenie zbioru danych na mniejsze zbiory, aż do
uzyskania n zbiorów jednoelementowych, które same z siebie są posortowane :), następnie zbiory
te są łączone w coraz większe zbiory posortowane, aż do uzyskania jednego, posortowanego
zbioru n-elementowego. Etap dzielenia nie jest skomplikowany, dzielenie następuje bez
sprawdzania jakichkolwiek warunków. Dzięki temu, w przeciwieństwie do algorytmu QuickSort,
następuje pełne rozwinięcie wszystkich gałęzi drzewa. Z kolei łączenie zbiorów posortowanych
wymaga odpowiedniego wybierania poszczególnych elementów z łączonych zbiorów z
uwzględnieniem faktu, że wielkość zbioru nie musi być równa (parzysta i nieparzysta ilość
elementów), oraz tego, iż wybieranie elementów z poszczególnych zbiorów nie musi następować
naprzemiennie, przez co jeden zbiór może osiągnąć swój koniec wcześniej niż drugi. Robi się to w
następujący sposób. Kopiujemy zawartość zbioru głównego do struktury pomocniczej. Następnie,
operując wyłącznie na kopii, ustawiamy wskaźniki na początki kolejnych zbiorów i porównujemy
wskazywane wartości. Mniejszą wartość wpisujemy do zbioru głównego i przesuwamy odpowiedni
wskaźnik o 1 i czynności powtarzamy, aż do momentu, gdy jeden ze wskaźników osiągnie koniec
zbioru. Wówczas mamy do rozpatrzenia dwa przypadki, gdy zbiór 1 osiągnął koniec i gdy zbiór 2
osiągnął koniec. W przypadku pierwszym nie będzie problemu, elementy w zbiorze głównym są
już posortowane i ułożone na właściwych miejscach. W przypadku drugim trzeba skopiować
pozostałe elementy zbioru pierwszego po kolei na koniec. Po zakończeniu wszystkich operacji
otrzymujemy posortowany zbiór główny.
Przykładowy przebieg algorytmu ukazany jest na schemacie poniżej:

Implementacja algorytmu przez scalanie:

import math
import random

#merge sort - sortowanie przez scalanie
#Rafal Gawlik
#www.algorytm.org

#sortowanie - operacja scalania
def merge(L,start, center,finish):
 """Operacja scalania"""
 i = start
 j = center + 1

 L2 = [] #lista pomocnicza

 #wybieraj odpowiednie elementy z dwoch tablic
 while (i <= center) and (j <= finish):
 if L[j] < L[i]:

 L2.append(L[j])
 j = j + 1
 else:
 L2.append(L[i])
 i = i + 1

 #jedna z tablic skonczyla sie przepisz reszte z pozostalej
 if i <= center:
 while i <= center:
 L2.append(L[i])
 i = i + 1
 else:
 while j <= finish:
 L2.append(L[j])
 j = j + 1

 #przepisz wyniki z tablicy tymczasowej
 s = finish - start + 1
 i = 0
 while i < s:
 L[start + i] = L2[i]
 i = i + 1

 return L

#sortowanie przez scalanie
def merge_sort(L, start, finish):
 """sortowanie merge sort"""
 if start != finish:

 #dzielimy dablice do konca
 center = int(math.floor((start + finish)/2))
 #na lewo
 merge_sort(L, start, center)
 #na prawo
 merge_sort(L,center+1,finish)

 #operacja scalania
 merge(L,start, center,finish)
 return L

#generuje dane wejsciowe w porzadku malejacym
def malejaco(n):
 L = []
 for i in range(0,n):
 L.append(n-i-1)
 return L

#generuje dane wejsciowe w porzadku losowym
def losowe(n):
 L = []
 a = range(0,n)
 for i in range(0,n):
 L.append(random.choice(a))
 return L

#przyklad uzycia
n = input('Podaj ilosc danych: ')
w = input('Dane wjsciowe: Losowo/Malejaco [1/2]: ')

if int(w) == 1:
 L = losowe(int(n))
 print(L)
elif int(w) == 2:
 L = malejaco(int(n))
 print(L)
else:
 print('napisales bzdure')

L = merge_sort(L,0,len(L)-1)

print('Po posortowaniu:')
print(L)

