Szukanie elementéw z wartownikiem
Materiaty ze strony: algorytm.org

Zatbzmy ze mamy dang tablice n-elementéw i chcemy odnalezé w niej zadany element x.
Niech bedzie to tablica a o indeksach od 1 do n. Czyli kolejne jej elementy

oznaczymy: a[1], a[2], a[3], ..., a[n-1], a[n].

Jezeli przyjrzymy sie doktadnie klasycznemu algorytmowi przeglgdania tablicy w
poszukiwaniu elementu:

; i

nie odnaleziono elementu NIE
) —
0 Wartosci x
‘/TAK

= o
H i=1+1
lTAK

odnaleziono element x,
pod indeksem i

l

: |

zauwazymy, ze dla kazdego elementu wykonywane sg dwa poréwnania:

pierwsze: czy znalezlismy sie juz na koncu tablicy,
drugie: czy aktualnie przeglgdany element jest rowny poszukiwanemu.

Liczbe poréwnan mozna zredukowac wykorzystujgc algorytm wyszukiwania z
wartownikiem. Nazwa tego algorytmu bierze sie ze sposobu, w jaki wykorzystywany jest
element szukany x.

By odnalez¢ element x podejmiemy nastepujgce kroki:



na koncu tablicy (czyli pod indeksem n+1) wstawimy szukany element x - bedzie to nasz
wartownik, w przypadku gdy nie znajdziemy go nigdzie indziej w tablicy, zabezpieczy nas
on przed wyjsciem poza tablice,

przejdziemy po kolejnych elementach tablicy, tak dtugo az nie znajdziemy szukanego
elementu,

w momencie znalezienia szukanego elementu x sprawdzamy, ktory jest to element tablicy?
Jezeli jest to ostatni element tablicy (n+1) to trafiliSmy na naszego wartownika i oznacza
to, ze w tablicy nie byto szukanego elementu x, w przeciwnym razie element x zostat
odnaleziony.

W stosunku do klasycznego algorytmu wyszukiwania oszczedzamy czas na sprawdzaniu
czy osiagnelismy koniec tablicy. Sprawdzenie to wystepuje raz - po odnalezieniu elementu
szukanego, a nie tak jak poprzednio przed kazdym sprawdzeniem kolejnego elementu.
Operacje odnajdowania elementu w tablicy z wartownikiem mozemy zapisac
nastepujgcym schematem blokowym:

aln i 1] = x

L
NIE
i=i+1 -— ]
ITAK

nie odnaleziono elementu TAK
. -_—
0 wartosci x
INIE

odnaleziono element x,
pod ineksem i

Algorytm ten mimo, ze jest szybszy od zwyklego wyszukiwania to ma takg sama jak on
ztozonos¢ obliczeniowg wynoszgcg O(n), co oznacza, ze czas potrzebny na wyszukanie



http://www.algorytm.org/dla-poczatkujacych/szukanie-zadanego-elementu.html

elementu tg metodg rosnie w sposaéb liniowy wraz z liniowym wzrostem liczby elementow
w przeszukiwanej tablicy. To znaczy, ze czas potrzebny na wyszukanie dwa razy wiekszej
liczby elementow wzrosnie dwukrotnie.

Podczas implementowania tego rozwigzania nalezy zapewni¢ miejsce w tablicy potrzebne
do dodania wartownika. Nalezy wiec deklarowac tablice o rozmiarze o jeden wiekszym jak
liczba przechowywanych elementow.

Przyktad implementacji w jezyku Python

#szukanie z wartownikiem
#www.algorytm.org

from random import randint

ileliczb = 20 #rozmiar tablicy

mina =0 #minimalna wartosc elementu
maxa = 100 #maksymalna wartosc elementu
straz=""

tab =[]

#wypelnij tablice przypadkowymi wartosciami

foriin range(ileliczb):
tab.append(randint(mina, maxa))

while True:
try:
szukana = int(input("Podaj liczbe: ")) #odgadnij liczbe
except ValueError:
print("To nie jest liczba. Sprébuj jeszcze raz.") #nie podano liczby
else:
tab.append(szukana) #dodaj wartownika do tablicy
i=0
while tabl[i] != szukana: #dopoki nie znaleziono elementu
i+=1 #przesuwaj sie dalej
break
if i == ileliczb:

print("Straznik. Liczby nie ma w tablicy") #znaleziono wartownika, szukana liczba nie
#znajduje sie w tablicy
else:
print("Znaleziono: ", str(szukana), "na miejscu: ", i) #znaleziono podana liczbe na pozycji i



