
Szukanie elementów z wartownikiem

Materiały ze strony: algorytm.org

Załóżmy że mamy daną tablicę n-elementów i chcemy odnaleźć w niej zadany element x.
Niech będzie to tablica a o indeksach od 1 do n. Czyli kolejne jej elementy
oznaczymy: a[1], a[2], a[3], ..., a[n-1], a[n].
Jeżeli przyjrzymy się dokładnie klasycznemu algorytmowi przeglądania tablicy w
poszukiwaniu elementu:

zauważymy, że dla każdego elementu wykonywane są dwa porównania:

 pierwsze: czy znaleźliśmy się już na końcu tablicy,
 drugie: czy aktualnie przeglądany element jest równy poszukiwanemu.

Liczbę porównań można zredukować wykorzystując algorytm wyszukiwania z
wartownikiem. Nazwa tego algorytmu bierze się ze sposobu, w jaki wykorzystywany jest
element szukany x.

By odnaleźć element x podejmiemy następujące kroki:

 na końcu tablicy (czyli pod indeksem n+1) wstawimy szukany element x - będzie to nasz
wartownik, w przypadku gdy nie znajdziemy go nigdzie indziej w tablicy, zabezpieczy nas
on przed wyjściem poza tablicę,

 przejdziemy po kolejnych elementach tablicy, tak długo aż nie znajdziemy szukanego
elementu,

 w momencie znalezienia szukanego elementu x sprawdzamy, który jest to element tablicy?
Jeżeli jest to ostatni element tablicy (n+1) to trafiliśmy na naszego wartownika i oznacza
to, że w tablicy nie było szukanego elementu x, w przeciwnym razie element x został
odnaleziony.

W stosunku do klasycznego algorytmu wyszukiwania oszczędzamy czas na sprawdzaniu
czy osiągnęliśmy koniec tablicy. Sprawdzenie to występuje raz - po odnalezieniu elementu
szukanego, a nie tak jak poprzednio przed każdym sprawdzeniem kolejnego elementu.
Operację odnajdowania elementu w tablicy z wartownikiem możemy zapisać
następującym schematem blokowym:

Algorytm ten mimo, że jest szybszy od zwykłego wyszukiwania to ma taką samą jak on

złożoność obliczeniową wynoszącą O(n), co oznacza, że czas potrzebny na wyszukanie

http://www.algorytm.org/dla-poczatkujacych/szukanie-zadanego-elementu.html

elementu tą metodą rośnie w sposób liniowy wraz z liniowym wzrostem liczby elementów

w przeszukiwanej tablicy. To znaczy, że czas potrzebny na wyszukanie dwa razy większej

liczby elementów wzrośnie dwukrotnie.

Podczas implementowania tego rozwiązania należy zapewnić miejsce w tablicy potrzebne

do dodania wartownika. Należy więc deklarować tablicę o rozmiarze o jeden większym jak

liczba przechowywanych elementów.

Przykład implementacji w języku Python

#szukanie z wartownikiem

#www.algorytm.org

from random import randint

ileliczb = 20 #rozmiar tablicy

mina = 0 #minimalna wartosc elementu

maxa = 100 #maksymalna wartosc elementu

straz = ""

tab = []

#wypelnij tablice przypadkowymi wartosciami

for i in range(ileliczb):

 tab.append(randint(mina, maxa))

while True:

 try:

 szukana = int(input("Podaj liczbę: ")) #odgadnij liczbe

 except ValueError:

 print("To nie jest liczba. Spróbuj jeszcze raz.") #nie podano liczby

 else:

 tab.append(szukana) #dodaj wartownika do tablicy

 i = 0

 while tab[i] != szukana: #dopoki nie znaleziono elementu

 i += 1 #przesuwaj sie dalej

 break

if i == ileliczb:

 print("Strażnik. Liczby nie ma w tablicy") #znaleziono wartownika, szukana liczba nie

 #znajduje sie w tablicy

else:

 print("Znaleziono: ", str(szukana), "na miejscu: ", i) #znaleziono podana liczbe na pozycji i

