
Sortowanie szybkie quicksort

Sortowanie szybkie (ang. quicksort) – jeden z popularnych algorytmów sortowania działających na

zasadzie „dziel i zwyciężaj”

Sortowanie szybkie (ang. QuickSort) zostało wynalezione w 1962 przez C.A.R. Hoare’a.

Algorytm sortowania szybkiego jest wydajny: jego średnia złożoność obliczeniowa jest rzędu O(n

log n). Ze względu na szybkość i prostotę implementacji jest powszechnie używany. Jego

implementacje znajdują się w bibliotekach standardowych wielu środowisk programowania.

Wyjaśnimy jak quicksort wykorzystuje strategię dziel-i-rządź (divide-and-conquer).

Podobnie jak w przypadku merge sort, załóżmy, że chcemy posortować

podtablicę array[p..r], zakładając na początku, że nasza tablica to array[0..n-1].

1. Podzielmy poprzez wybranie elementu w podtablicy array[p..r]. Nazwijmy ten

element elementem rozdzielającym. Przestawmy elementy w podtablicy array[p..r],

tak aby wszystkie elementy w podtablicy array[p..r], które są mniejsze lub równe

elementowi rozdzielającemu były na lewo od niego, a wszystkie pozostałe elementy w

podtablicy były od niego na prawo. Tę procedurę nazywamy partycjonowaniem. W

tym momencie, nie jest istotne, w jakim porządku względem siebie znajdują się

zarówno elementy na lewo od elementu rozdzielającego, jak i na prawo. Dbamy

jedynie o to, aby każdy z elementów znajdował się w pewnym miejscu po

odpowiedniej stronie elementu rozdzielającego.

Z powodów praktycznych zawsze wybieramy najbardziej prawy element w

podtablicy array[r] jako element rozdzielający. Więc, na przykład, jeśli podtablica

składa się z elementów [9, 7, 5, 11, 12, 2, 14, 3, 10, 6], wybieramy 6 jako element

rozdzielający. Po partycjonowaniu, podtablica może wyglądać następująco: [5, 2, 3, 6,

12, 7, 14, 9, 10, 11]. Przyjmijmy, że 'q' jest indeksem elementu rozdzielającego.

2. Zwyciężaj rekurencyjnie sortując podtablice array[p..q-1] (wszystkie elementy na

lewo od piwotu, o wartości mniejszej bądź równej wartości piwotu)

i array[q+1..r] (wszystkie elementy na prawo od piwotu, o wartości większej niż

piwot).

3. Połącz nie robiąc nic. Skończyliśmy kiedy krok dzielenia posortował rekurencyjnie.

Dlaczego? Wszystkie elementy na lewo od piwotu w tablicy array[p..q-1] są mniejsze

lub równe piwotowi i są posortowane oraz wszystkie elementy na prawo od piwotu

w array[q+1..r] są większe niż piwot i są posortowane. Elementy w array[p..r] nic na

to nie poradzą ale są posortowane!

Zastanów się nad naszym przykładem. Po sortowaniu rekurencyjnym pod-tablica na

lewo od piwotu wynosi [2, 3, 5], a tablica na prawo od piwotu wynosi [7, 9, 10, 11, 12,

14]. Więc pod-tablica posiada [2, 3, 5] następnie 6 oraz [7, 9, 10, 11, 12, 14]. Pod-

tablica jest posortowana!

Podstawowymi przypadkami są tablice o mniej niż dwu elementach, tak jak w

sortowaniu przez złączanie (merge sort). W sortowaniu przez złączanie, nie spotyka

się pod-tablicy bez elementów, ale w quicksort może się tak zdarzyć, jeżeli pozostałe

elementy pod-tablicy są wszystkie mniejsze lub wszystkie większe niż piwot.

Cofnijmy się do drugiego kroku i prześledźmy rekurencyjne sortowanie pod-tablic. Po

pierwszym podziale, mamy pod-tablice [5, 2, 3] i [12, 7, 14, 9, 10, 11], z 6 jako

piwotem.

Aby posortować pod-tablicę [5, 2, 3], wybieramy 3 jako piwot. Po podziale mamy [2,

3, 5]. Pod-tablica [2], po lewej stronie piwotu, jest podstawowym przypadkiem,

podobnie jak pod-tablica [5] po prawej.

Aby posortować pod-tablicę [12, 7, 14, 9, 10, 11], wybieramy 11 jako piwot, co daje w

rezultacie [7, 9, 10] po lewej stronie piwotu i [14, 12] po prawo. Po posortowaniu tych

pod-tablic, otrzymujemy kolejno [7, 9, 10], 11, [12, 14].

Poniżej zaprezentowano cały przebieg algorytmu quicksort. Na niebiesko zaznaczono

miejsca, gdzie były piwoty w poprzednich przebiegach rekurencji, zatem wartości w

tych miejscach już nie będą sprawdzane ani przenoszone:

Funkcja sortowania w języku Python

def qsort(arr, l=0, r=None):

 if r is None: r = len(arr) - 1

 i, j = l, r

 pivot = arr[(l + r) / 2]

 while i <= j:

 while arr[i] < pivot: i += 1

 while arr[j] > pivot: j -= 1

 if i <= j:

 arr[i], arr[j] = arr[j], arr[i]

 i += 1; j -= 1

 if l < j: qsort(arr, l, j)

 if r > i: qsort(arr, i, r)

