Sortowanie szybkie quicksort

Sortowanie szybkie (ang. quicksort) —jeden z popularnych algorytmdw sortowania dziatajgcych na
zasadzie ,dziel i zwyciezaj”

Sortowanie szybkie (ang. QuickSort) zostato wynalezione w 1962 przez C.A.R. Hoare’a.

Algorytm sortowania szybkiego jest wydajny: jego srednia ztozonos¢ obliczeniowa jest rzedu O(n
log n). Ze wzgledu na szybkos¢ i prostote implementac;ji jest powszechnie uzywany. Jego
implementacje znajduja sie w bibliotekach standardowych wielu sSrodowisk programowania.

Wyjasnimy jak quicksort wykorzystuje strategie dziel-i-rzadz (divide-and-conquer).
Podobnie jak w przypadku merge sort, zatozmy, ze chcemy posortowac

podtablice arrayip..r1, zaktadajgc na poczatku, ze nasza tablica to array(0..n-17.

. Podzielmy poprzez wybranie elementu w podtablicy arrayip..r1. Nazwijmy ten
element elementem rozdzielajacym. Przestawmy elementy w podtablicy arrayip..r1,
tak aby wszystkie elementy w podtablicy array(p..r1, ktore sg mniejsze lub rowne
elementowi rozdzielajacemu byly na lewo od niego, a wszystkie pozostate elementy w
podtablicy byly od niego na prawo. Te¢ procedurg nazywamy partycjonowaniem. W
tym momencie, nie jest istotne, w jakim porzadku wzgledem siebie znajdujg si¢
zarowno elementy na lewo od elementu rozdzielajacego, jak 1 na prawo. Dbamy
jedynie o to, aby kazdy z elementow znajdowat si¢ w pewnym miejscu po

odpowiedniej stronie elementu rozdzielajacego.

Z powodow praktycznych zawsze wybieramy najbardziej prawy element w
podtablicy arrayir1 jako element rozdzielajacy. Wigc, na przyktad, jesli podtablica
sktada si¢ z elementow [9, 7, 5, 11, 12, 2, 14, 3, 10, 6], wybieramy 6 jako element
rozdzielajacy. Po partycjonowaniu, podtablica moze wygladac nastepujaco: [5, 2, 3, 6,
12,7,14,9, 10, 11]. Przyymijmy, ze 'q' jest indeksem elementu rozdzielajacego.

. Zwyciezaj rekurencyjnie sortujac podtablice arrayip..q-11 (WSzystkie elementy na
lewo od piwotu, o warto$ci mniejszej badz rdwnej wartosci piwotu)

| array(q+1..r1 (Wszystkie elementy na prawo od piwotu, o wartosci wigkszej niz
piwot).

. Polgcz nie robigc nic. Skonczylismy kiedy krok dzielenia posortowal rekurencyjnie.
Dlaczego? Wszystkie elementy na lewo od piwotu w tablicy arrayip..q-17 8§ mniejsze

lub rowne piwotowi 1 sg posortowane oraz wszystkie elementy na prawo od piwotu
W array(q+l..r] S§ Wigksze niz piwot i sg posortowane. Elementy w array(p..r1 NiC Na

to nie poradzg ale sg posortowane!

Zastan6w si¢ nad naszym przyktadem. Po sortowaniu rekurencyjnym pod-tablica na
lewo od piwotu wynosi [2, 3, 5], a tablica na prawo od piwotu wynosi [7, 9, 10, 11, 12,
14]. Wiec pod-tablica posiada [2, 3, 5] nastepnie 6 oraz [7, 9, 10, 11, 12, 14]. Pod-
tablica jest posortowanal

Podstawowymi przypadkami sg tablice o mniej niz dwu elementach, tak jak w
sortowaniu przez zlgczanie (merge sort). W sortowaniu przez ztaczanie, nie spotyka
si¢ pod-tablicy bez elementow, ale w quicksort moze si¢ tak zdarzy¢, jezeli pozostate

elementy pod-tablicy sg wszystkie mniejsze lub wszystkie wigksze niz piwot.

Cofnijmy si¢ do drugiego kroku i przesledzmy rekurencyjne sortowanie pod-tablic. Po
pierwszym podziale, mamy pod-tablice [5, 2, 3] 1 [12, 7, 14, 9, 10, 11], z 6 jako
piwotem.

Aby posortowac pod-tablice [35, 2, 3], wybieramy 3 jako piwot. Po podziale mamy [2,
3, 5]. Pod-tablica [2], po lewej stronie piwotu, jest podstawowym przypadkiem,
podobnie jak pod-tablica [5] po prawe;.

Aby posortowac pod-tablice [12, 7, 14,9, 10, 11], wybieramy 11 jako piwot, co daje w
rezultacie [7, 9, 10] po lewej stronie piwotu i [14, 12] po prawo. Po posortowaniu tych
pod-tablic, otrzymujemy kolejno [7, 9, 10], 11, [12, 14].

Ponizej zaprezentowano caty przebieg algorytmu quicksort. Na niebiesko zaznaczono
miejsca, gdzie byty piwoty w poprzednich przebiegach rekurencji, zatem wartosci w

tych miejscach juz nie bedg sprawdzane ani przenoszone:

=0 =T |
b
tad
£
L
o>
=
-
=

P q 1
o 1 2_3_4 5 & 7 8B O
[s[2]3]efz]7[14] o]r0[11]
Prq P q f

pr pr P 5 gr pgr
0 2 4 L] g _9
[2[3]s]e[7]o]o[11]12]i4]
\ Y

P ogr p.r

4 _ 5 9
[2]3]5 6 7)o 10[11]12[14]

Y

pr
4

213|516 |7|9|10)11{12/14

Funkcja sortowania w jezyku Python

def gsort (arr, 1=0, r=None) :
if r is None: r = len(arr) - 1
i, =1, r
pivot = arr[(1 + r) / 2]
while 1 <= j:

while arr[i] < pivot: i += 1

while arr([j] > pivot: j -=1

if 1 <= j:
arr[i], arr[j] = arr[j], arr[i]
i+=1; 3 -=1

if 1 < j: gsort(arr, 1, 3J)
if r > i: gsort(arr, i, r)

