
Znajdowanie lidera w zbiorze

Liderem będziemy nazywać element zbioru występujący w nim więcej

niż [n/2] razy, gdzie n oznacza ilość elementów zbiorze. Innymi słowy

liderem jest element, którego liczba wystąpień jest większa, od sumy

liczby wystąpień pozostałych elementów.

W zbiorze { 9 2 9 5 9 7 9 } liderem jest 9, ponieważ 9 występuje w
zbiorze 4 razy, a wszystkie pozostałe elementy występują w sumie 3
razy.

Narzucającym się rozwiązaniem tego problemu jest znalezienie lidera
przy pomocy wcześniej opisanych algorytmów wyszukiwania najczęściej
pojawiającego się elementu. Można to wykonać w sposób następujący:

Wyszukujemy najczęściej występujący element. Sprawdzamy, czy ilość
jego wystąpień jest większa od [n/2]. Jeśli tak, znaleźliśmy lidera. W
przeciwnym razie lider w zbiorze nie występuje.

Algorytm posiada klasę czasowej złożoności

obliczeniowej O(n2) lub O(n + m) w zależności od wyboru algorytmu

wyznaczającego najczęstszy element zbioru.

Program wypełnia 20 elementowy zbiór pseudolosowymi liczbami z

zakresu od 0 do 9, a następnie poszukuje w nim lidera.

-*- coding: cp1250 -*-
Wyszukiwanie lidera

import random

N = 20 # liczba elementów w zbiorze
WMAX = 9 # górny zakres elementów

d = []

Generujemy zbiór liczb pseudolosowych

wn = random.randint(0, WMAX)
for i in range(N): d.append(wn)
for i in range(4 + N / 2):
 d[random.randint(0, N - 1)] = random.randint(0, WMAX)

Wyszukujemy najczęstszy element

wn, ln, i = d[0], 1, 0
while i < N - ln:
 licznik = 1
 for j in range(i + 1, N):
 if d[i] == d[j]: licznik += 1
 if licznik > ln: wn, ln = d[i], licznik
 i += 1
wt = (ln > N / 2)

Prezentujemy wyniki

for i in d:
 if wt and (wn == i):
 print " <%d>" % i,
 else:
 print " %d " % i,
print
print
if wt:
 print "lider = %d, ln = %d" % (wn, ln)
else:
 print "W zbiorze nie ma lidera"
print
print

Gotowe

raw_input("Koniec, nacisnij dowolny klawisz...")

